Lou Jian-feng, Zhang Yan-geng, Hong Tao, Zhou Ting-ting, Guo Shao-dong. Study on the model of hot-spot ignition based on friction generated heat on the microcrack face[J]. Explosion And Shock Waves, 2015, 35(6): 807-811. doi: 10.11883/1001-1455(2015)06-0807-05
Citation: Lou Jian-feng, Zhang Yan-geng, Hong Tao, Zhou Ting-ting, Guo Shao-dong. Study on the model of hot-spot ignition based on friction generated heat on the microcrack face[J]. Explosion And Shock Waves, 2015, 35(6): 807-811. doi: 10.11883/1001-1455(2015)06-0807-05

Study on the model of hot-spot ignition based on friction generated heat on the microcrack face

doi: 10.11883/1001-1455(2015)06-0807-05
  • Received Date: 2014-04-22
  • Rev Recd Date: 2014-07-24
  • Publish Date: 2015-12-10
  • A hot-spot ignition model based on friction generated heat on microcrack face was established. In this model, the heat conduction equation including chemical reaction and friction was solved by implicit finite element method. Furthermore, the latent heat resulting from particle melting was also taken into account in this model. The effects of such key parameters hot-spot size, strain rate, and interface pressure on explosive ignition were detected and analyzed in detail. It is found that the temperature of the hot-spot rises more quickly and the response occurs earlier in time with the increase of the hot-spot size. The accumulation of heat is faster and the explosive is more likely to be ignited where the strain rate is larger or the pressure is higher.
  • [1]
    Asay Blaine W. Non-shock initiation of explosives[M]. Heidelberg: Springer-Verlag, 2010: 15-18.
    [2]
    Bowden F P, Yoffe A D. Initiation and growth of explosives in liquids and solids[M]. Cambridge: Cambridge University Press, 1952.
    [3]
    Bowden F P, Yoffe A D. Hot spots on rubbing surfaces and the detonation of explosives by friction[J]. Proceedings of the Royal Society of London, Series A: Mathematical & Physical Sciences, 1947, 188(10): 329-349. doi: 10.1098/rspa.1947.0012
    [4]
    Amosov A P, Bostandzhiyan S A, Kozlov V S. Ignition of solid explosives by the heat of dry friction[J]. Fizika Goreniya i Vzryva, 1972, 8(3): 362-368. http://www.onacademic.com/detail/journal_1000034907003910_0866.html
    [5]
    Amosov A P, Bostandzhiyan S A, Kozlov V S, et al. Mechanism of heating up and ignition of solid explosives due to external friction as a result of mechanical stimulations[J]. Fizika Goreniya i Vzryva, 1976, 12(5): 699-703. doi: 10.1007/BF00743166
    [6]
    Wiegand D A, Redingius B, Ellis K, et al. Pressure and friction dependent mechanical strength-cracks and plastic flow[J]. International Journal of Solids and Structures, 2011, 48(11/12): 1617-1629. http://www.sciencedirect.com/science/article/pii/S0020768311000424
    [7]
    Wiegand D A, Redingius B, Ellis K, et al. Evidence for fricgtion between crack surfaces during deformation of dcomposite plastic bonded explosives[C]∥Elert M L, Buttle W T, Furnish M D, et al. Proceedings of Shock Compression of Condensed Matter-2009. Nashville, Tennessee, 2009: 349-352.
    [8]
    Wiegand D A, Redingius B. The role of friction in the mechanical failure properties of a polymer particulate composite[C]∥APS March Meeting. New Orleans, 2008.
    [9]
    陈文.高速侵彻条件下战斗部装药安全性研究[D].北京: 北京理工大学, 2009.
    [10]
    Boyle V, Frey R, Blake O. Combined pressure shear ignition of explosive[C]∥Lee E L, Short J M. Proceedings of the 9th International Detonation Symposium. Oregon, Portland, 1989: 3-17.
    [11]
    Frey R B. The initiation of explosive charges by rapid shear[C]∥Proceedings of the 7th International Detonation Symposium. Annapolis, Maryland, 1981: 36-42.
    [12]
    Dienes J K. A unified theory of flow, hot spots, and fragmentation with an application to explosive sensitivity[M]. New York: Springer, 1996: 366-398.
    [13]
    Dienes J K, Kershner J D. Multiple-shock initiation via statistical crack mechanics[C]∥Short J M, Kennedy J E. Proceeding of the 11th International Detonation Symposium. Snowmass, Colorado, 1998: 717-724.
    [14]
    Dienes J K, Kershner J D. Crack dynamics and explosive burn via generalized coordinates[J]. Journal of Computer-Aided Materials Design, 2000, 7(3): 217-237. doi: 10.1023/A:1011874909560
    [15]
    Bennett J G, Haberman K S, Johnson J N, et al. A constitutive model for the non-shock ignition and mechanical response of high explosives[J]. Journal of Mechanical Physical Solids, 1998, 46(12): 2303-2322. doi: 10.1016/S0022-5096(98)00011-8
    [16]
    Linan A, Williams F A. Theory of ignition of a reactive solid by constant energy flux[J]. Combustion Science and Technology, 1971, 3(2): 91-98. doi: 10.1080/00102207108952276
  • Cited by

    Periodical cited type(5)

    1. 夏全志,吴艳青,柴传国,杨昆,黄风雷. 冲击加载下PBX界面对热点形成和安全性影响. 兵工学报. 2024(06): 1840-1853 .
    2. 胡秋实,尚海林,吴兆奎,廖深飞,傅华. PBX炸药缝隙挤压加载下的破裂模式及点火响应. 兵工学报. 2024(09): 3135-3146 .
    3. Guijun Wang,Yanqing Wu,Kun Yang,Quanzhi Xia,Fenglei Huang. Optimization of mechanical and safety properties by designing interface characteristics within energetic composites. Defence Technology. 2024(12): 59-72 .
    4. 黄彬彬,傅华,喻寅,刘仓理. 基于有限元-离散元结合方法的Steven实验三维数值模拟. 含能材料. 2020(10): 995-1002 .
    5. 刘睿,韩勇,代晓淦,李明,王军. 初始裂纹对高聚物粘结炸药低速撞击点火影响数值模拟研究. 含能材料. 2019(10): 812-818 .

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (4273) PDF downloads(806) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return