Citation: | Lou Jian-feng, Zhang Yan-geng, Hong Tao, Zhou Ting-ting, Guo Shao-dong. Study on the model of hot-spot ignition based on friction generated heat on the microcrack face[J]. Explosion And Shock Waves, 2015, 35(6): 807-811. doi: 10.11883/1001-1455(2015)06-0807-05 |
[1] |
Asay Blaine W. Non-shock initiation of explosives[M]. Heidelberg: Springer-Verlag, 2010: 15-18.
|
[2] |
Bowden F P, Yoffe A D. Initiation and growth of explosives in liquids and solids[M]. Cambridge: Cambridge University Press, 1952.
|
[3] |
Bowden F P, Yoffe A D. Hot spots on rubbing surfaces and the detonation of explosives by friction[J]. Proceedings of the Royal Society of London, Series A: Mathematical & Physical Sciences, 1947, 188(10): 329-349. doi: 10.1098/rspa.1947.0012
|
[4] |
Amosov A P, Bostandzhiyan S A, Kozlov V S. Ignition of solid explosives by the heat of dry friction[J]. Fizika Goreniya i Vzryva, 1972, 8(3): 362-368. http://www.onacademic.com/detail/journal_1000034907003910_0866.html
|
[5] |
Amosov A P, Bostandzhiyan S A, Kozlov V S, et al. Mechanism of heating up and ignition of solid explosives due to external friction as a result of mechanical stimulations[J]. Fizika Goreniya i Vzryva, 1976, 12(5): 699-703. doi: 10.1007/BF00743166
|
[6] |
Wiegand D A, Redingius B, Ellis K, et al. Pressure and friction dependent mechanical strength-cracks and plastic flow[J]. International Journal of Solids and Structures, 2011, 48(11/12): 1617-1629. http://www.sciencedirect.com/science/article/pii/S0020768311000424
|
[7] |
Wiegand D A, Redingius B, Ellis K, et al. Evidence for fricgtion between crack surfaces during deformation of dcomposite plastic bonded explosives[C]∥Elert M L, Buttle W T, Furnish M D, et al. Proceedings of Shock Compression of Condensed Matter-2009. Nashville, Tennessee, 2009: 349-352.
|
[8] |
Wiegand D A, Redingius B. The role of friction in the mechanical failure properties of a polymer particulate composite[C]∥APS March Meeting. New Orleans, 2008.
|
[9] |
陈文.高速侵彻条件下战斗部装药安全性研究[D].北京: 北京理工大学, 2009.
|
[10] |
Boyle V, Frey R, Blake O. Combined pressure shear ignition of explosive[C]∥Lee E L, Short J M. Proceedings of the 9th International Detonation Symposium. Oregon, Portland, 1989: 3-17.
|
[11] |
Frey R B. The initiation of explosive charges by rapid shear[C]∥Proceedings of the 7th International Detonation Symposium. Annapolis, Maryland, 1981: 36-42.
|
[12] |
Dienes J K. A unified theory of flow, hot spots, and fragmentation with an application to explosive sensitivity[M]. New York: Springer, 1996: 366-398.
|
[13] |
Dienes J K, Kershner J D. Multiple-shock initiation via statistical crack mechanics[C]∥Short J M, Kennedy J E. Proceeding of the 11th International Detonation Symposium. Snowmass, Colorado, 1998: 717-724.
|
[14] |
Dienes J K, Kershner J D. Crack dynamics and explosive burn via generalized coordinates[J]. Journal of Computer-Aided Materials Design, 2000, 7(3): 217-237. doi: 10.1023/A:1011874909560
|
[15] |
Bennett J G, Haberman K S, Johnson J N, et al. A constitutive model for the non-shock ignition and mechanical response of high explosives[J]. Journal of Mechanical Physical Solids, 1998, 46(12): 2303-2322. doi: 10.1016/S0022-5096(98)00011-8
|
[16] |
Linan A, Williams F A. Theory of ignition of a reactive solid by constant energy flux[J]. Combustion Science and Technology, 1971, 3(2): 91-98. doi: 10.1080/00102207108952276
|
[1] | LIU Jun, SUN Zhiyuan, ZHANG Fengguo, WANG Pei. Simulation study of the recompression of metal spallation zone[J]. Explosion And Shock Waves, 2022, 42(3): 033101. doi: 10.11883/bzycj-2021-0262 |
[2] | LI Kebin, DONG Xinlong, WANG Yonggang, CHEN Xiang, LI Xiaojie. Continuous resistance test method in determining the attitude of flyer plate driven by sliding detonation[J]. Explosion And Shock Waves, 2021, 41(5): 054102. doi: 10.11883/bzycj-2020-0151 |
[3] | Wang Zhide, Xia Yuanyou, Zhou Xiong, Xia Guobang, Yang Jinhua. Blasting vibration control and damage characteristics of bedding rock slopes[J]. Explosion And Shock Waves, 2017, 37(1): 27-36. doi: 10.11883/1001-1455(2017)01-0027-10 |
[4] | Yuan Shuai, Bai Jing-song, Zhang Han-zhao, Li Ping. Preliminary simulation of blast shutter driven by glancing detonation[J]. Explosion And Shock Waves, 2015, 35(4): 496-500. doi: 10.11883/1001-1455(2015)04-0496-05 |
[5] | YAN Feng, JIANG Fu-xing. Experiment on rock damage under blasting load[J]. Explosion And Shock Waves, 2009, 29(3): 275-280. doi: 10.11883/1001-1455(2009)03-0275-06 |
[6] | LI Xue-mei, WANG Xiao-song, WANG Peng-lai, LU Min, JIA Lu-feng. Spall of cylindrical copper by converging sliding detonation[J]. Explosion And Shock Waves, 2009, 29(2): 162-166. doi: 10.11883/1001-1455(2009)02-0162-05 |
[7] | ZHANG Lei, HU Shi-sheng, CHEN De-xing, ZHANG Shou-bao, YU Ze-qing, LIU Fei. Spall fracture properties of steel-fiber-reinforced concrete[J]. Explosion And Shock Waves, 2009, 29(2): 119-124. doi: 10.11883/1001-1455(2009)02-0119-06 |
[8] | DONG Gang, FAN Bao-chun, ZHU Min-ming, CHEN Yi-liang. An application of in situ adaptive tabulation method in numerical simulation of gaseous detonation[J]. Explosion And Shock Waves, 2008, 28(1): 75-79. doi: 10.11883/1001-1455(2008)01-0075-05 |
[9] | ZHANG Lei, HU Shi-sheng, CHEN De-xing, ZHANG Shou-bao, YU Ze-qing, LIU Fei. Spall characteristics of concrete materials[J]. Explosion And Shock Waves, 2008, 28(3): 193-199. doi: 10.11883/1001-1455(2008)03-0193-07 |
[10] | JIANG Song-qing, LIU Wen-tao. Numerical modeling of spall fracture behavior in U-Nb alloys[J]. Explosion And Shock Waves, 2007, 27(6): 481-486. doi: 10.11883/1001-1455(2007)06-0481-06 |
[11] | JU Yang, HUAN Xiao-feng, SONG Zhen-duo, TIAN Lu-lu, MAO Yan-zhe. Numerical analyses of blast wave stress propagation and damage evolution in rock masses[J]. Explosion And Shock Waves, 2007, 27(2): 136-142. doi: 10.11883/1001-1455(2007)02-0136-07 |
[12] | YU Lu-jun, FAN Bao-chun, DONG Gang, GUI Ming-yue. Numerical simulation of the process on a pulse detonation engine[J]. Explosion And Shock Waves, 2006, 26(6): 522-527. doi: 10.11883/1001-1455(2006)06-0522-06 |
[13] | WANG Dai-hua, LIU Dian-shu, DU Yu-lan, LIU Hui-peng. Numerical simulation of anti-blasting mechanism and energy distribution of composite protective structure with foam concrete[J]. Explosion And Shock Waves, 2006, 26(6): 562-567. doi: 10.11883/1001-1455(2006)06-0562-06 |
[14] | XIE Shu-gang, FAN Chun-lei, CHEN Da-nian, WANG Huan-ran. Experimental and numerical studies on spall of OFHC[J]. Explosion And Shock Waves, 2006, 26(6): 532-536. doi: 10.11883/1001-1445(2006)06-0532-05 |
[15] | LIN Ying-song, ZHU Tian-yu, JANG Jin-bao, YUAN Xin-fang, LI De-cong, DING Yan-sheng. Numerical simulation analysis of effect on the cement sample by blast wave in the water[J]. Explosion And Shock Waves, 2006, 26(5): 462-467. doi: 10.11883/1001-1455(2006)05-0462-06 |
[16] | SONG Shun-cheng, WANG Jun, WANG Jian-jun. Numerical simulation for penetration of ceramic composite plate by long-rod projectile of tungsten alloy[J]. Explosion And Shock Waves, 2005, 25(2): 102-106. doi: 10.11883/1001-1455(2005)02-0102-05 |
[17] | TENG Hong-hui, ZHANG De-liang, LI Hui-huang, JIANG Zong-lin. Numerical investigation of detonation direct initiation induced by toroidal shock wave focusing[J]. Explosion And Shock Waves, 2005, 25(6): 512-518. doi: 10.11883/1001-1455(2005)06-0512-07 |
[18] | LI De-hua1, CHENG Xin-lu, YANG Xiang-dong, WU Guo-dong. Numerical simulation of detonation parameters for PETN, RDX and HMX explosives[J]. Explosion And Shock Waves, 2005, 25(4): 325-329. doi: 10.11883/1001-1455(2005)04-0325-05 |
[19] | WANG Yong-gang, HE Hong-liang, CHEN Den-ping, WANG Li-li, JING Fu-qian. Comparison of different spall models for simulating spallation in ductile metals[J]. Explosion And Shock Waves, 2005, 25(5): 467-471. doi: 10.11883/1001-1455(2005)05-0467-05 |
[20] | LI Xue-mei, JIN Xiao-gang, LI Da-hong. The spall characteristics of cylindrical steel tube under inward explosion loading[J]. Explosion And Shock Waves, 2005, 25(2): 107-111. doi: 10.11883/1001-1455(2005)02-0107-05 |