Citation: | Chen Chuang, Wang Xiao-ming, Li Wen-bin, Li Wei-bing, Dong Xiao-liang. Effect of matching of detonation waveform with liner configuration on the rod-like jet formation[J]. Explosion And Shock Waves, 2015, 35(6): 812-819. doi: 10.11883/1001-1455(2015)06-0812-08 |
[1] |
谭多望, 孙承纬.成型装药研究新进展[J].爆炸与冲击, 2008, 28(1): 50-56. doi: 10.11883/1001-1455(2008)01-0050-07
Tan Duo-wang, Sun Cheng-wei. Progress in studies on shaped charge[J]. Explosion and Shock Waves, 2008, 28(1): 50-56. doi: 10.11883/1001-1455(2008)01-0050-07
|
[2] |
Church P, Cornish R, Cullis I, et al. Experimental and simulation studies of slow stretching jets[C]∥Reinecke W G. Proceedings of the 18th International Symposium on Ballistics. Lancaster: Technomic Publishing Co. Inc, 1999: 474-483.
|
[3] |
Fong R. Warhead technology advancement[C]∥Armaments for the Army Transformation Conference. New Jersey: U. S. Army Armament Research, Development and Engineering Center, 2000: 1-26.
|
[4] |
Blache A, Weimann K. Shaped charge with jetting projectile for extended targets[C]∥Niekerk C V. Proceedings of the 17th International Symposium on Ballistics. Midrand, South Africa: The South African Ballistics Organisation, 1998: 207-215.
|
[5] |
Funston R J, Mattsson K V, Ouye N N. K-charge—A multipurpose shaped charge warhead[P]. USA: US6393991 B1, 2002-05-28.
|
[6] |
黄正祥, 张先锋, 陈惠武.起爆方式对聚能杆式侵彻体成型的影响[J].兵工学报, 2004, 25(3): 289-291. http://www.cnki.com.cn/Article/CJFDTotal-BIGO200403007.htm
Huang Zheng-xiang, Zhang Xian-feng, Chen Hui-wu. Influence of modes of detonation on the mechanism of jetting projectile charge[J]. Acta Armamentarii, 2004, 25(3): 289-291. http://www.cnki.com.cn/Article/CJFDTotal-BIGO200403007.htm
|
[7] |
吴晗玲, 段卓平, 汪永庆.杆式射流形成的数值模拟研究[J].爆炸与冲击, 2006, 26(4): 328-332. doi: 10.11883/1001-1455(2006)04-0328-05
Wu Han-ling, Duan Zhuo-ping, Wang Yong-qing. Simulation investigation of rod-like jets[J]. Explosion and Shock Waves, 2006, 26(4): 328-332. doi: 10.11883/1001-1455(2006)04-0328-05
|
[8] |
王志军, 伊建亚, 张洪成, 等.紧凑型聚能装药结构对侵彻体成型的影响[J].兵器材料科学与工程, 2014, 37(1): 53-56. http://www.cqvip.com/QK/95120X/20141/48450436.html
Wang Zhi-jun, Yi Jian-ya, Zhang Hong-cheng, et al. Influence of compact shaped charge on penetrator formation[J]. Ordnance Material Science and Engineering, 2014, 37(1): 53-56. http://www.cqvip.com/QK/95120X/20141/48450436.html
|
[9] |
Muller F. Mach-reflection of detonation waves in condensed high explosives[J]. Propellants, Explosives, Pyrotechnics, 1978, 3(4): 115-118. doi: 10.1002/prep.19780030403
|
[10] |
王继海.二维非定常流和激波[M].北京: 科学出版社, 1994: 38-146.
|
[11] |
张洋溢, 龙源, 何洋扬, 等.爆轰波斜冲击金属介质理论在聚能装药药型罩设计中的应用研究[J].振动与冲击, 2011, 30(7): 214-217. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201107043.htm
Zhang Yang-yi, Long Yuan, He Yang-yang, et al. Application of oblique impact theory of detonation waves at the explosive-metal interface in design of shaped charge[J]. Journal of Vibration and Shock, 2011, 30(7): 214-217. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201107043.htm
|
[12] |
王树魁, 贝静芬.成型装药原理及其应用[M].北京: 兵器工业出版社, 1992: 51-69.
|
[13] |
Livermore Software Technology Corporation. LS-DYNA keyword user's manual[Z]. California: Livermore Software Technology Corporation, 2003.
|
[14] |
Li Wei-bing, Wang Xiao-ming, Li Wen-bin. The effect of annular multi-point initiation on the formation and penetration of an explosively formed penetrator[J]. International Journal of Impact Engineering, 2010, 37(4): 414-424. doi: 10.1016/j.ijimpeng.2009.08.008
|
[1] | QIAN Bingwen, ZHOU Gang, LI Mingrui, YIN Lixin, GAO Pengfei, CHEN Chunlin, MA Kun. Rigid-body critical transformation velocity of a high-strength steel projectile penetrating concrete targets at high velocities[J]. Explosion And Shock Waves, 2024, 44(10): 103301. doi: 10.11883/bzycj-2022-0309 |
[2] | ZHOU Gang, LI Mingrui, WEN Heming, QIAN Bingwen, SUO Tao, CHEN Chunlin, MA Kun, FENG Na. Mechanism on hypervelocity penetration of a tungsten alloy projectile into a concrete target[J]. Explosion And Shock Waves, 2021, 41(2): 021407. doi: 10.11883/bzycj-2020-0304 |
[3] | WANG Kehui, ZHOU Gang, LI Ming, ZOU Huihui, WU Haijun, GENG Baogang, DUAN Jian, DAI Xianghui, SHEN Zikai, LI Pengjie, GU Renhong. Experimental research on the mechanism of a high-velocity projectile penetrating into a reinforced concrete target[J]. Explosion And Shock Waves, 2021, 41(11): 113302. doi: 10.11883/bzycj-2020-0463 |
[4] | LIU Junwei, ZHANG Xianfeng, LIU Chuang, CHEN Haihua, WANG Jipeng, XIONG Wei. Study on mass erosion model of projectile penetrating concrete at high speed considering variation of friction coefficient[J]. Explosion And Shock Waves, 2021, 41(8): 083301. doi: 10.11883/bzycj-2020-0250 |
[5] | GUO Hu, HE Liling, CHEN Xiaowei, CHEN Gang, LI Jicheng. Penetration mechanism of a high-speed projectile into a shelter made of spherical aggregates[J]. Explosion And Shock Waves, 2020, 40(10): 103301. doi: 10.11883/bzycj-2019-0428 |
[6] | QIAN Bingwen, ZHOU Gang, LI Jin, LI Yunliang, ZHANG Dezhi, ZHANG Xiangrong, ZHU Yurong, TAN Shushun, JING Jiyong, ZHANG Zidong. Penetration depth of hypervelocity tungsten alloy projectile penetrating concrete target[J]. Explosion And Shock Waves, 2019, 39(8): 083301. doi: 10.11883/bzycj-2019-0141 |
[7] | OUYANG Hao, CHEN Xiaowei. Analysis of mass abrasion of high-speed penetrator influenced by aggregate in concrete target[J]. Explosion And Shock Waves, 2019, 39(7): 073102. doi: 10.11883/bzycj-2018-0068 |
[8] | SONG Chunming, LI Gan, WANG Mingyang, QIU Yanyu, CHENG Yihao. Theoretical analysis of projectiles penetrating into rock targets at different velocities[J]. Explosion And Shock Waves, 2018, 38(2): 250-257. doi: 10.11883/bzycj-2017-0198 |
[9] | Ren Jie, Xu Yuxin, Wang Shushan. High-speed impact of low-carbon alloy steel plates by ultra-high strength blunt projectiles[J]. Explosion And Shock Waves, 2017, 37(4): 629-636. doi: 10.11883/1001-1455(2017)04-0629-08 |
[10] | Chen Changhai, Hou Hailiang, Zhang Yuanhao, Dai Wenxi, Zhu Xi, Fang Zhiwei. Residual characteristics of moderately thick water-backed steel plates penetrated by high-velocity fragments[J]. Explosion And Shock Waves, 2017, 37(6): 959-965. doi: 10.11883/1001-1455(2017)06-0959-07 |
[11] | Song Meili, Li Wenbin, Wang Xiaoming, Feng Jun, Liu Zhilin. Experiments and dimensional analysis ofhigh-speed projectile penetration efficiency[J]. Explosion And Shock Waves, 2016, 36(6): 752-758. doi: 10.11883/1001-1455(2016)06-0752-07 |
[12] | Li Jie, Li Meng-shen, Li Hong, Shi Cun-cheng. Numerical modeling of projectile penetration into dry sand[J]. Explosion And Shock Waves, 2015, 35(5): 633-640. doi: 10.11883/1001-1455(2015)05-0633-08 |
[13] | Shen Chao, Pi Ai-guo, Liu Liu, Liu Jian-cheng, Huang Feng-lei. Discarding the sabot of a high-velocity projectile by a laminated wood target[J]. Explosion And Shock Waves, 2015, 35(5): 711-716. doi: 10.11883/1001-1455(2015)05-0711-06 |
[14] | Guo Lei, He Yong, Zhang Nian-song, Pang Chun-xu, Zheng Hao. On the mass loss of a projectile based on the Archard theory[J]. Explosion And Shock Waves, 2014, 34(5): 622-629. doi: 10.11883/1001-1455(2014)05-0622-08 |
[15] | HeLi-ling, GaoJin-zhong, ChenXiao-wei, SunYuan-cheng, JiYong-qiang. Experimentalstudyonmeasurementtechnologyforprojectiledeceleration[J]. Explosion And Shock Waves, 2013, 33(6): 608-612. doi: 10.11883/1001-1455(2013)06-0608-05 |
[16] | Wang Bin, Cao Ren-yi, Tan Duo-wang. Experimental study on penetration of reinforced concrete by a high-speed penetrator with large mass[J]. Explosion And Shock Waves, 2013, 33(1): 98-102. doi: 10.11883/1001-1455(2013)01-0098-05 |
[17] | HE Li-ling, CHEN Xiao-wei, FAN Ying. Metallographicobservationofreduced-scaleadvancedEPW afterhigh-speedpenetration[J]. Explosion And Shock Waves, 2012, 32(5): 515-522. doi: 10.11883/1001-1455(2012)05-0515-08 |
[18] | HE Xiang, XU Xiang-yun, SUN Gui-juan, SHEN Jun, YANG Jian-chao, JIN Dong-liang. Experimentalinvestigationonprojectileshigh-velocitypenetration intoconcretetarget[J]. Explosion And Shock Waves, 2010, 30(1): 1-6. doi: 10.11883/1001-1455(2010)01-0001-06 |
[19] | WANG Yi-nan, HUANG Feng-lei, DUAN Zhuo-ping. Bendingofprojectilewithsmallangleofattack duringhigh-speedpenetrationofconcretetargets[J]. Explosion And Shock Waves, 2010, 30(6): 598-606. doi: 10.11883/1001-1455(2010)06-0598-09 |
[20] | LIANG Bin, CHEN Xiao-wei, JI Yong-qiang, HUANG Han-jun, GAO Hai-ying, . Experimental study on deep penetration of reduced-scale advanced earth penetrating weapon[J]. Explosion And Shock Waves, 2008, 28(1): 1-9. doi: 10.11883/1001-1455(2008)01-0001-09 |
1. | 王宇新,李晓杰,杨国俊,范述宁,王小红,闫鸿浩. 304L/Q235B大面积金属板爆炸焊接物质点法模拟分析. 爆炸与冲击. 2022(03): 150-159 . ![]() | |
2. | 曾翔宇,李晓杰,王小红,闫鸿浩,李科斌. 爆炸焊接波状界面的形成和发展. 稀有金属材料与工程. 2020(06): 1977-1983 . ![]() | |
3. | 陈沛,段卫东,曾国伟,金沐. 钛/钢爆炸焊接界面波形及缺陷组织的形成机理. 爆破. 2019(01): 126-132 . ![]() | |
4. | 曾翔宇,李晓杰,曹景祥,王小红,闫鸿浩. 材料强度对爆炸焊接结合界面的影响. 爆炸与冲击. 2019(05): 139-145 . ![]() | |
5. | 闫建文,雷方超,俞祺洋,羊科印. 炸药量对爆炸焊接界面波影响的数值模拟. 工程爆破. 2018(06): 10-17 . ![]() |