Citation: | Zhu Yue-jin, Dong Gang. A study of vorticity characteristics of shock-flame interaction[J]. Explosion And Shock Waves, 2015, 35(6): 839-845. doi: 10.11883/1001-1455(2015)06-0839-07 |
[1] |
Lindl J D, McCrory R L, Campbell E M. Progress toward ignition and burn propagation in inertial confinement fusion[J]. Physics Today, 1992, 45(9): 32-40. doi: 10.1063/1.881318
|
[2] |
Marble F E, Hendrick G J, Zukoski E E. Progress toward shock enhancement of supersonic combustion process[R]. AIAA, 1987: 87-1880.
|
[3] |
Oran E S, Gamezo V N. Origins of the deflagration-to-detonation transition in gas-phrase combustion[J]. Combustion and Flame, 2007, 148(1/2): 4-47. http://www.sciencedirect.com/science/article/pii/s0010218006001817
|
[4] |
Markstein G H. A shock-tube study of flame front-pressure wave interaction[C]∥6th Symposium(International)on Combustion. Pittsburgh, USA: The Combustion Institute, 1957: 387-398.
|
[5] |
Thomas G O, Bambrey R, Brown C. Experimental observations of flame acceleration and transition to detonation following shock-flame interaction[J]. Combustion Theory and Modeling, 2001, 5(4): 573-594. doi: 10.1088/1364-7830/5/4/304
|
[6] |
Batley G A, Mcintosh A C, Brindley J, et al. A numerical study of the vorticity field generated by the baroclinic effect due to the propagation of a planar pressure wave through a cylindrical premixed laminar flame[J]. Journal of Fluid Mechanics, 1994, 279: 217-237. doi: 10.1017/S0022112094003897
|
[7] |
Batley G A, Mcintosh A C, Brindley J. The baroclinic effect in combustion[J]. Mathematical and Computer Modelling, 1996, 24(8): 165-176. doi: 10.1016/0895-7177(96)00148-3
|
[8] |
Ju Y, Shimano A, Inoue O. Vorticity generation and flame distortion induced by shock flame interaction[C]∥27th Symposium(International)on Combustion. Pittsburgh, USA: The Combustion Institute, 1998: 735-741.
|
[9] |
Khokhlov A M, Oran E S, Chtchelkanova A Y, et al. Interaction of a shock with a sinusoidally perturbed flame[J]. Combustion and Flame, 1999, 117(1/2): 99-116. http://www.sciencedirect.com/science/article/pii/S001021809800090X
|
[10] |
Khokhlov A M, Oran E S, Thomas G O. Numerical simulation of deflagration-to-detonation transition: The role of shock-flame interactions in turbulent flame[J]. Combustion and Flame, 1999, 117(3): 323-339. http://www.sciencedirect.com/science/article/pii/S0010218098000765
|
[11] |
Khokhlov A M, Oran E S. Numerical simulation of detonation initiation in a flame brush: The role of hot spots[J]. Combustion and Flame, 1999, 119(4): 400-416. http://www.sciencedirect.com/science/article/pii/S0010218099000589
|
[12] |
Dong G, Fan B C, Ye J F. Numerical investigation of ethylene flame bubble instability induced by shock waves[J]. Shock Waves, 2008, 17(6): 409-419. doi: 10.1007/s00193-008-0124-3
|
[13] |
朱跃进, 董刚, 范宝春.受限空间内激波与火焰作用的三维计算[J].推进技术, 2012, 33(3): 405-411. http://www.cnki.com.cn/Article/CJFDTotal-TJJS201203010.htm
Zhu Yue-jin, Dong Gang, Fan Bao-chun. Three-dimensional computation of the interactions between shock waves and flame in a confined space[J]. Journal of Propulsion Technology, 2012, 33(3): 405-411. http://www.cnki.com.cn/Article/CJFDTotal-TJJS201203010.htm
|
[14] |
Zhu Y J, Dong G, Liu Y X. Three-dimensional numerical simulations of spherical flame evolutions in shock and reshock accelerated flows[J]. Combustion Science and Technology, 2013, 185(10): 1415-1440. doi: 10.1080/00102202.2013.798656
|
[15] |
朱跃进, 董刚, 刘怡昕, 等.激波诱导火焰变形、混合和燃烧的数值研究[J].爆炸与冲击, 2013, 33(4): 430-437. doi: 10.11883/1001-1455(2013)04-0430-08
Zhu Yue-jin, Dong Gang, Liu Yi-xin, et al. A numerical study on shock induced distortion, mixing and combustion of flame[J]. Explosion and Shock Waves, 2013, 33(4): 430-437. doi: 10.11883/1001-1455(2013)04-0430-08
|
[16] |
都志辉.高性能计算之并行编程技术----MPI并行程序设计[M].北京: 清华大学出版社, 2001.
|
[17] |
Picone J M, Boris J P. Vorticity generation by shock propagation through bubbles in a gas[J]. Journal of Fluid Mechanics, 1988, 189: 23-51. doi: 10.1017/S0022112088000904
|
[18] |
Yang J, Kubota T, Zukoski E E. A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity[J]. Journal of Fluid Mechanics, 1994, 258: 217-244. doi: 10.1017/S0022112094003307
|
[19] |
Layes G, Jourdan G, Houas L. Experimental study on a plane shock wave accelerating a gas bubble[J]. Physics of Fluids, 2009, 21(7): 074102. doi: 10.1063/1.3176474
|
[1] | MAO Wenzhe, ZHANG Guotao, YANG Shuaishuai, XU Zihui, WANG Yan, JI Wentao. Characteristics of hydrogenated magnesium dust explosion flame propagating in a semi-enclosed space[J]. Explosion And Shock Waves, 2024, 44(6): 065401. doi: 10.11883/bzycj-2023-0363 |
[2] | GUO Hongzhan, ZHANG Yan, WANG Xiaorong. Explosion pressure characteristics of hydrogen-methane-ethanol mixtures[J]. Explosion And Shock Waves, 2023, 43(12): 125403. doi: 10.11883/bzycj-2023-0224 |
[3] | LIU Jiajia, ZHANG Yang, ZHANG Xiang, NIE Zishuo. Simulation study on propagation characteristics of gas explosion in Y-shaped ventilated coal face[J]. Explosion And Shock Waves, 2023, 43(8): 085401. doi: 10.11883/bzycj-2023-0018 |
[4] | XU Weizheng, HUANG Yu, LI Yexun, ZHAO Hongtao, ZHENG Xianxu, WANG Yanping. On formation mechanism of local cavitation in the near-wall flow field caused by an underwater explosion[J]. Explosion And Shock Waves, 2023, 43(3): 032201. doi: 10.11883/bzycj-2022-0075 |
[5] | Effect of right-angle duct and its section variation on gas explosion prevention[J]. Explosion And Shock Waves. |
[6] | ZHANG Yansong, LI Nan, GUO Rui, ZHANG Xinyan, ZHANG Gongyan, HUANG Xingwang. Relationship between pyrolysis kinetics and flame propagation characteristics of lauric acid and stearic acid dust explosion[J]. Explosion And Shock Waves, 2022, 42(7): 075402. doi: 10.11883/bzycj-2021-0470 |
[7] | CHENG Fangming, NAN Fan, XIAO Yang, LUO Zhenmin, NIU Qiaoxia. Experimental study on the suppression of methane-air explosion by CF3I and CO2[J]. Explosion And Shock Waves, 2022, 42(6): 065402. doi: 10.11883/bzycj-2021-0386 |
[8] | XU Xiaoyuan, SUN Jinhua, LIU Xuanya. Numerical simulation of methane-air explosion in a connected device with volume fraction gradient[J]. Explosion And Shock Waves, 2021, 41(4): 045401. doi: 10.11883/bzycj-2020-0086 |
[9] | WANG Qiuhong, SUN Yilin, LI Xin, JIANG Juncheng, ZHANG Mingguang, WANG Liubing. Numerical simulation on gas dispersions and vapor cloud explosions induced by gas released from an ethylene storage tank[J]. Explosion And Shock Waves, 2020, 40(12): 125401. doi: 10.11883/bzycj-2020-0202 |
[10] | JIA Hailin, XIANG Haijun, LI Dihui, ZHAI Rupeng. Suppression of explosion in pipelines with different blocking ratios by ultrafine water mist containing sodium chloride[J]. Explosion And Shock Waves, 2020, 40(4): 042201. doi: 10.11883/bzycj-2019-0268 |
[11] | LI Xiaobin, ZHANG Ruijie, CUI Liwei, ZHANG Qingli. Coupling analysis of explosion pressure and free radical change during methane explosion inhibited by urea[J]. Explosion And Shock Waves, 2020, 40(3): 032101. doi: 10.11883/bzycj-2019-0090 |
[12] | WEN Hu, YANG Yufeng, WANG Qiuhong, REN Xugang. Experimental study on micron-sized aluminum dust explosion in a rectangular pipe[J]. Explosion And Shock Waves, 2018, 38(5): 993-998. doi: 10.11883/bzycj-2016-0003 |
[13] | Deng Jun, Ren Xugang, Wang Qiuhong, Yang Yufeng. Explosion characteristics of zirconium dust cloud[J]. Explosion And Shock Waves, 2017, 37(3): 496-501. doi: 10.11883/1001-1455(2017)03-0496-06 |
[14] | Yu Minggao, Yang Yong, Pei Bei, Niu Pan, Zhu Xinna. Experimental study of methane explosion suppression by nitrogen twin-fluid water mist[J]. Explosion And Shock Waves, 2017, 37(2): 194-200. doi: 10.11883/1001-1455(2017)02-0194-07 |
[15] | Cao Wei-guo, Xu Sen, Liang Ji-yuan, Gao Wei, Pan Feng, Rao Guo-ning. Characteristics of flame propagation during coal dust cloud explosion[J]. Explosion And Shock Waves, 2014, 34(5): 586-593. doi: 10.11883/1001-1455(2014)05-0586-08 |
[16] | Li Run-zhi, Huang Zi-chao, Si Rong-jun. Influence of environmental temperature on gas explosion pressure and its rise rate[J]. Explosion And Shock Waves, 2013, 33(4): 415-419. doi: 10.11883/1001-1455(2013)04-0415-05 |
[17] | QIAN Hai-lin, WANG Zhi-rong, JIANG Jun-cheng. InfluenceofN2/CO2 mixtureonmethaneexplosion[J]. Explosion And Shock Waves, 2012, 32(4): 445-448. doi: 10.11883/1001-1455(2012)04-0445-04 |
[18] | LI Run-zhi. Numericalsimulationofcoaldustexplosioninducedbygasexplosion[J]. Explosion And Shock Waves, 2010, 30(5): 529-534. doi: 10.11883/1001-1455(2010)05-0529-06 |
[19] | JIN Ri-ya, HU Shuang-qi, BO Tao, ZHANG Ying-hao, YUAN Hong-su. Relation between explosion pressure and volume fraction of ClO2 gas[J]. Explosion And Shock Waves, 2009, 29(3): 333-336. doi: 10.11883/1001-1455(2009)03-0333-04 |
[20] | ZHONG Cheng-wen, LIU Jian-wen, ZHAO Shu-miao, ZHAO Hui-qiang. Numerical investigation of multi-cycle pulse detonation engine[J]. Explosion And Shock Waves, 2007, 27(6): 535-540. doi: 10.11883/1001-1455(2007)06-0535-06 |
1. | 刘可心,刘炜,孙亚松. 多因素耦合作用对甲烷爆炸特性的影响. 爆炸与冲击. 2023(03): 20-29 . ![]() | |
2. | 司荣军,李润之. 低浓度含氧瓦斯爆炸动力特性及防控关键技术. 煤炭科学技术. 2020(10): 17-36 . ![]() | |
3. | 孙从煌,曲艳东,刘万里,翟诚. 点火条件对密闭管道内预混氢气/空气燃爆特性的影响. 爆炸与冲击. 2018(03): 622-631 . ![]() | |
4. | 郭强,王明洋,高康华,赵天辉,孙松. 方形空间可燃气体爆燃泄爆实验及三维数值模拟研究. 爆炸与冲击. 2018(05): 1099-1105 . ![]() |