Volume 35 Issue 6
Nov.  2015
Turn off MathJax
Article Contents
Zhu Yue-jin, Dong Gang. A study of vorticity characteristics of shock-flame interaction[J]. Explosion And Shock Waves, 2015, 35(6): 839-845. doi: 10.11883/1001-1455(2015)06-0839-07
Citation: Zhu Yue-jin, Dong Gang. A study of vorticity characteristics of shock-flame interaction[J]. Explosion And Shock Waves, 2015, 35(6): 839-845. doi: 10.11883/1001-1455(2015)06-0839-07

A study of vorticity characteristics of shock-flame interaction

doi: 10.11883/1001-1455(2015)06-0839-07
  • Received Date: 2014-04-29
  • Rev Recd Date: 2014-08-21
  • Publish Date: 2015-12-10
  • The phenomenon of shock wave interacting with a flame involves a series of complicated physical and chemical processes, in which the generation and evolution of vorticity play an important role in controlling flame development. To systematically analyze the vorticity characteristics in the course of shock-flame interaction, a numerical study of a planar incident shock wave and its reflected wave interaction with a spherical flame was carried out by using the two-dimensional Navier-Stokes equations coupled with chemical reaction, and the requirement of high-resolution grid was met via the parallel computation. It is found that the baroclinic term plays a dominant role in the generation of vorticity within the flame zone, and the compression and dissipation terms restrain the generation of vorticity in the flame expanding stages. Besides, in the compression stages, the evolution of flame is mainly affected by the physical-rather than chemical-process.
  • loading
  • [1]
    Lindl J D, McCrory R L, Campbell E M. Progress toward ignition and burn propagation in inertial confinement fusion[J]. Physics Today, 1992, 45(9): 32-40. doi: 10.1063/1.881318
    [2]
    Marble F E, Hendrick G J, Zukoski E E. Progress toward shock enhancement of supersonic combustion process[R]. AIAA, 1987: 87-1880.
    [3]
    Oran E S, Gamezo V N. Origins of the deflagration-to-detonation transition in gas-phrase combustion[J]. Combustion and Flame, 2007, 148(1/2): 4-47. http://www.sciencedirect.com/science/article/pii/s0010218006001817
    [4]
    Markstein G H. A shock-tube study of flame front-pressure wave interaction[C]∥6th Symposium(International)on Combustion. Pittsburgh, USA: The Combustion Institute, 1957: 387-398.
    [5]
    Thomas G O, Bambrey R, Brown C. Experimental observations of flame acceleration and transition to detonation following shock-flame interaction[J]. Combustion Theory and Modeling, 2001, 5(4): 573-594. doi: 10.1088/1364-7830/5/4/304
    [6]
    Batley G A, Mcintosh A C, Brindley J, et al. A numerical study of the vorticity field generated by the baroclinic effect due to the propagation of a planar pressure wave through a cylindrical premixed laminar flame[J]. Journal of Fluid Mechanics, 1994, 279: 217-237. doi: 10.1017/S0022112094003897
    [7]
    Batley G A, Mcintosh A C, Brindley J. The baroclinic effect in combustion[J]. Mathematical and Computer Modelling, 1996, 24(8): 165-176. doi: 10.1016/0895-7177(96)00148-3
    [8]
    Ju Y, Shimano A, Inoue O. Vorticity generation and flame distortion induced by shock flame interaction[C]∥27th Symposium(International)on Combustion. Pittsburgh, USA: The Combustion Institute, 1998: 735-741.
    [9]
    Khokhlov A M, Oran E S, Chtchelkanova A Y, et al. Interaction of a shock with a sinusoidally perturbed flame[J]. Combustion and Flame, 1999, 117(1/2): 99-116. http://www.sciencedirect.com/science/article/pii/S001021809800090X
    [10]
    Khokhlov A M, Oran E S, Thomas G O. Numerical simulation of deflagration-to-detonation transition: The role of shock-flame interactions in turbulent flame[J]. Combustion and Flame, 1999, 117(3): 323-339. http://www.sciencedirect.com/science/article/pii/S0010218098000765
    [11]
    Khokhlov A M, Oran E S. Numerical simulation of detonation initiation in a flame brush: The role of hot spots[J]. Combustion and Flame, 1999, 119(4): 400-416. http://www.sciencedirect.com/science/article/pii/S0010218099000589
    [12]
    Dong G, Fan B C, Ye J F. Numerical investigation of ethylene flame bubble instability induced by shock waves[J]. Shock Waves, 2008, 17(6): 409-419. doi: 10.1007/s00193-008-0124-3
    [13]
    朱跃进, 董刚, 范宝春.受限空间内激波与火焰作用的三维计算[J].推进技术, 2012, 33(3): 405-411. http://www.cnki.com.cn/Article/CJFDTotal-TJJS201203010.htm

    Zhu Yue-jin, Dong Gang, Fan Bao-chun. Three-dimensional computation of the interactions between shock waves and flame in a confined space[J]. Journal of Propulsion Technology, 2012, 33(3): 405-411. http://www.cnki.com.cn/Article/CJFDTotal-TJJS201203010.htm
    [14]
    Zhu Y J, Dong G, Liu Y X. Three-dimensional numerical simulations of spherical flame evolutions in shock and reshock accelerated flows[J]. Combustion Science and Technology, 2013, 185(10): 1415-1440. doi: 10.1080/00102202.2013.798656
    [15]
    朱跃进, 董刚, 刘怡昕, 等.激波诱导火焰变形、混合和燃烧的数值研究[J].爆炸与冲击, 2013, 33(4): 430-437. doi: 10.11883/1001-1455(2013)04-0430-08

    Zhu Yue-jin, Dong Gang, Liu Yi-xin, et al. A numerical study on shock induced distortion, mixing and combustion of flame[J]. Explosion and Shock Waves, 2013, 33(4): 430-437. doi: 10.11883/1001-1455(2013)04-0430-08
    [16]
    都志辉.高性能计算之并行编程技术----MPI并行程序设计[M].北京: 清华大学出版社, 2001.
    [17]
    Picone J M, Boris J P. Vorticity generation by shock propagation through bubbles in a gas[J]. Journal of Fluid Mechanics, 1988, 189: 23-51. doi: 10.1017/S0022112088000904
    [18]
    Yang J, Kubota T, Zukoski E E. A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity[J]. Journal of Fluid Mechanics, 1994, 258: 217-244. doi: 10.1017/S0022112094003307
    [19]
    Layes G, Jourdan G, Houas L. Experimental study on a plane shock wave accelerating a gas bubble[J]. Physics of Fluids, 2009, 21(7): 074102. doi: 10.1063/1.3176474
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (4100) PDF downloads(670) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return