Volume 35 Issue 6
Nov.  2015
Turn off MathJax
Article Contents
Hou Hai-zhou, Hu Yi-ting, Peng Jin-hua, Jin Jian-wei. Dynamic behavior and constitutive model of phenolic cotton fabric material under impact loading[J]. Explosion And Shock Waves, 2015, 35(6): 858-863. doi: 10.11883/1001-1455(2015)06-0858-06
Citation: Hou Hai-zhou, Hu Yi-ting, Peng Jin-hua, Jin Jian-wei. Dynamic behavior and constitutive model of phenolic cotton fabric material under impact loading[J]. Explosion And Shock Waves, 2015, 35(6): 858-863. doi: 10.11883/1001-1455(2015)06-0858-06

Dynamic behavior and constitutive model of phenolic cotton fabric material under impact loading

doi: 10.11883/1001-1455(2015)06-0858-06
  • Received Date: 2014-04-18
  • Rev Recd Date: 2014-10-05
  • Publish Date: 2015-12-10
  • In order to obtain mechanical properties of phenolic cotton fabric material at different strain rates, we performed experiments of the uniaxial compression tests of phenolic cotton fabric material at the strain rate ranging from 10-3 to 103 s-1, using the universal testing machine and the split Hopkinson pressure bar (SHPB), obtained the stress-strain curve at different strain rates, and discussed compression failure mechanism under quasi-static and dynamic loads. The results from our experiments show that the dynamic compression fail strength of phenolic cotton fabric material has strong strain rate sensitivity and it increases along with the strain rate. Compared with the stress under the quasi-static loading, the peak stress under the dynamic loading increases by approximately 10 times, while the failure strain is reduced to about half. The differences in the mechanical properties under quasi-static and dynamic loading conditions is due to the strain rate effect of the fiber matrix interface characteristics on the one hand, and to the differences in failure modes at different strain rates on the other. Zhu-Wang-Tang (ZWT) constitutive was adopted to describe the mechanical behavior of the phenolic cotton fabric material.
  • loading
  • [1]
    孙朝翔, 鞠玉涛, 胡少青, 等.聚碳酸酯高应变率分离式霍普金森压杆实验研究[J].南京理工大学学报, 2012, 36(3): 529-533. http://www.cnki.com.cn/Article/CJFDTotal-NJLG201203029.htm

    Sun Chao-xiang, Ju Yu-tao, Hu Shao-qing, et al. Experimental investigation of polycarbonate at high strain rate by SHPB[J]. Journal of Nanjing University of Science and Technology, 2012, 36(3): 529-533. http://www.cnki.com.cn/Article/CJFDTotal-NJLG201203029.htm
    [2]
    谢中秋, 张蓬蓬. PMMA材料的动态压缩力学特性及应变率相关本构模型研究[J].实验力学, 2013, 28(2): 220-226. http://www.cqvip.com/QK/91138X/20132/45886843.html

    Xie Zhong-qiu, Zhang Peng-peng. On the dynamic compressive mechanical properties and strain rate related constitutive model of PMMA material[J]. Journal of Experimental Mechanics, 2013, 28(2): 220-226. http://www.cqvip.com/QK/91138X/20132/45886843.html
    [3]
    管公顺, 王少恒, 成方圆.不同加载应变率下有机玻璃的压缩破坏与力学行为[J].航空材料学报, 2012, 32(6): 96-101. http://d.wanfangdata.com.cn/Periodical/hkclxb201206016

    Guan Gong-shun, Wang Shao-heng, Cheng Fang-yuan. Compression failure and mechanics behavior of PMMA under different loading strain rates[J]. Journal of Aeronautical Materials, 2012, 32(6): 96-101. http://d.wanfangdata.com.cn/Periodical/hkclxb201206016
    [4]
    王礼立, 施绍裘, 陈江瑛, 等. ZWT非线性热粘弹性本构关系的研究与应用[J].宁波大学学报:理工版, 2000, 13: 141-149. http://www.cqvip.com/Main/Detail.aspx?id=4997411

    Wang Li-li, Shi Shao-qiu, Chen Jiang-ying, et al. ZWT non-linear thermo-viscoelastic constitutive relationship between research and application[J]. Journal of Ningbo University: Natural Science & Engineering Edition, 2000, 13: 141-149. http://www.cqvip.com/Main/Detail.aspx?id=4997411
    [5]
    王礼立, Pluvinage G, Labibes K.冲击载荷下高聚物动态本构关系对粘弹性波传播特性的影响[J].宁波大学学报, 1995, 8(3): 30-57. http://www.cnki.com.cn/Article/CJFDTotal-NBDZ503.005.htm

    Wang Li-li, Pluvinage G, Labibes K. The influence of dynamic constitutive relations of polymers at impact loading on the viscoelastic wave propagation character[J]. Journal of Ningbo University, 1995, 8(3): 30-57. http://www.cnki.com.cn/Article/CJFDTotal-NBDZ503.005.htm
    [6]
    邹广平, 杨继, 王瑞瑞, 等.聚氨酯夹芯整体层连复合材料的力学性能研究[J].哈尔滨工业大学学报, 2011, 43: 257-261. http://www.cqvip.com/QK/90629X/2011S1/1003576966.html

    Zou Guang-ping, Yang Ji, Wang Rui-rui, et al. Experimental investigation on mechanical properties of the integrated hollow core sandwich composite filling polyurethane[J]. Journal of Harbin Institute of Technology, 2011, 43: 257-261. http://www.cqvip.com/QK/90629X/2011S1/1003576966.html
    [7]
    Forquin P, Nasraoui M, Rusinek A. Experimental study of the confined behavior of PMMA under quasi-static and dynamic loading[J]. International Journal of Impact Engineering, 2012, 40/41(1): 46-57. http://www.sciencedirect.com/science/article/pii/S0734743X11001473
    [8]
    宋力, 胡时胜. SHPB数据处理中的二波法与三波法[J].爆炸与冲击, 2005, 25(4): 368-373. doi: 10.11883/1001-1455(2005)04-0368-06

    Song Li, Hu Shi-sheng. Two-wave and three-wave method in SHPB data processing[J]. Explosion and Shock Waves, 2005, 25(4): 368-373. doi: 10.11883/1001-1455(2005)04-0368-06
    [9]
    Zhang H D, Zhu Z W, Song S C, et al. Dynamic behavior of frozen soil under uniaxial strain and stress conditions[J]. Applied Mathematics and Mechanics: English Edition, 2013, 34(2): 229-238. doi: 10.1007/s10483-013-1665-x
    [10]
    Christmann A, Ienny P, Quantin J C, et al. Mechanical behavior at large strain of polycarbonate nanocomposites during uniaxial tensile test[J]. Polymer, 2011, 52(18): 4033-4044. doi: 10.1016/j.polymer.2011.06.056
    [11]
    王鹏飞, 胡时胜.轴向尺寸对泡沫铝动静态力学性能的影响[J].爆炸与冲击, 2012, 32(4): 393-398. doi: 10.11883/1001-1455(2012)04-0393-06

    Wang Peng-fei, Hu Shi-sheng. Mechanical properties of foam aluminum with different sizes[J]. Explosion and Shock Waves, 2012, 32(4): 393-398. doi: 10.11883/1001-1455(2012)04-0393-06
    [12]
    Capan I, Tarimci C, Hasasan A K. Characterization and optical vapour sensing properties of PMMA thin films[J]. Materials Science and Engineering: C, 2009, 29(1): 140-143. http://www.sciencedirect.com/science/article/pii/S0928493108001185
    [13]
    胡泽斌, 许金余, 席峰, 等. EPS混凝土的冲击力学行为及本构模型[J].振动与冲击, 2011, 30(2): 65-68. http://d.wanfangdata.com.cn/Periodical/zdycj201102013

    Hu Ze-bin, Xu Jin-yu, Xi Feng, et al. Dynamic behavior and constitutive model of styropor concrete under impact loading[J]. Journal of Vibration and Shock, 2011, 30(2): 65-68. http://d.wanfangdata.com.cn/Periodical/zdycj201102013
    [14]
    Casem D, Weerasooriya T, Moy P. Inertia effects of quartz force transducers embedded in a split Hopkinson pressure bar[J]. Experimental Mechanics, 2005, 45: 368-376. doi: 10.1007/BF02428167
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (3212) PDF downloads(614) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return