Citation: | Guo Chun-huan, Zhou Pei-jun, Lu Zi-chun, Chang Yun-peng, Zou Guang-ping, Jiang Feng-chun. Application of pulse shaping technique in Hopkinson bar experiments[J]. Explosion And Shock Waves, 2015, 35(6): 881-887. doi: 10.11883/1001-1455(2015)06-0881-07 |
[1] |
Gerlach R, Sivasubramaniam K, Sathianathan C S, et al. A novel method for pulse shaping of split Hopkinson tensile bar signals[J]. International Journal of Impact Engineering, 2011, 38(12): 976-980. doi: 10.1016/j.ijimpeng.2011.08.007
|
[2] |
Nemat-Nasser S, Isaacs J B, Starrett J E. Hopkinson techniques for dynamic recovery experiments[J]. Proceedings of the Royal Society of London Series a-mathematical Physical and Engineering Sciences, 1991, 435(11): 371-391. http://rspa.royalsocietypublishing.org/content/435/1894/371.abstract
|
[3] |
Gerlach R, Kettenbeil C, Petrinic N. A new split Hopkinson tensile bar design[J]. International Journal of Impact Engineering, 2012, 50(12): 63-67. http://www.sciencedirect.com/science/article/pii/S0734743X1200156X
|
[4] |
Chen W, Lu F, Cheng M. Tension and compression tests of two polymers under quasi-static and dynamic loading[J]. Polymer Testing, 2002, 21(2): 113-121. doi: 10.1016/S0142-9418(01)00055-1
|
[5] |
Duffy J, Campbell J D, Hawley R H. On the use of a torsional split Hopkinson bar to study rate effects in 1100-O aluminum[J]. Transactions of the ASME, Journal of Applied Mechanics, 1971, 38(1): 83-91. doi: 10.1115/1.3408771
|
[6] |
Jiang F, Vecchio K S. Hopkinson bar loaded fracture experimental technique: A critical review of dynamic fracture toughness tests[J]. Applied Mechanics Reviews, 2009, 62(060902): 1-39. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=AMREAD000062000006060802000001&idtype=cvips&gifs=Yes
|
[7] |
Chuban V D, Ivanteyev V I, Chudayev B J, et al. Numerical simulation of flutter validated by flight-test data for TU-204 aircraft[J]. Computer Structure, 2002, 80(32): 2551-2563. doi: 10.1016/S0045-7949(02)00221-3
|
[8] |
Saeedi M A, Barkhordari M A. Dynamic behaviour of space structures using models of different pattern density[J]. Computing Developments in Civil and Structural Engineering, 1999: 59-63. http://www.researchgate.net/publication/269077713_Dynamic_Behaviour_of_Space_Structures_using_Models_of_Different_Pattern_Density
|
[9] |
Sinha G, Mukhopadhyay M. Transient dynamic response of arbitrary stiffened shells by the finite element method[J]. Journal of Vibration and Acoustics-Transactions of the ASME, 1995, 117(1): 11-16. doi: 10.1115/1.2873855
|
[10] |
Ghoshal A, Harrison J, Sundaresan M J, et al. Damage detection testing on a helicopter flexbeam[J]. Journal of Intelligent Material Systems and Structures, 2001, 12(5): 315-330. doi: 10.1106/9V39-ETJU-DNMG-TJUF
|
[11] |
宋博, 姜锡权, 陈为农.霍普金森压杆实验中的脉冲整形技术[C]//第三届全国爆炸力学实验技术交流会论文集.合肥, 2004: 1-70.
|
[12] |
Christensen R J, Swanson S R, Brown W S. Split-Hopkinson-bar tests on rocks under confining pressure[J]. Experimental Mechanics, 1972, 12(11): 508-513. doi: 10.1007/BF02320747
|
[13] |
Ellwood S, Griffiths L J, Parry D J. Materials testing at high constant strain rates[J]. Journal of Physics E: Science Instrument, 1982, 15(3): 280-282. doi: 10.1088/0022-3735/15/3/009
|
[14] |
Parry D J, Walker A G, Dixon P R. Hopkinson bar pulse smoothing[J]. Measurement Science & Technology, 1995, 6(5): 443-446.
|
[15] |
Cloete T J, Westhuizen A V, Kok S, et al. A tapered striker pulse shaping technique for uniform strain rate dynamic compression of bovine bone[J]. DYMAT International Conferences, 2009, 1: 901-907. http://www.researchgate.net/publication/46251659_A_tapered_striker_pulse_shaping_technique_for_uniform_strain_rate_dynamic_compression_of_bovine_bone
|
[16] |
Li X B, Lok T S, Zhao J, et al. Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks[J]. International Journal of Rock Mechanics & Mining Sciences, 2000, 37(7): 1055-1060. http://www.sciencedirect.com/science/article/pii/S136516090000037X
|
[17] |
Li X B, Lok T S, Zhao J. Dynamic characteristics of granite subjected to intermediate loading rate[J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21-39.
|
[18] |
Lok T S, Asce M, Zhao P J. Impact response of steel fiber-reinforced concrete using a split Hopkinson pressure bar[J]. Journal of Materials in Civil Engineering, 2004, 16(1): 54-59. http://www.researchgate.net/publication/245307944_Impact_Response_of_Steel_Fiber-Reinforced_Concrete_Using_a_Split_Hopkinson_Pressure_Bar
|
[19] |
Baranowski P, Malachowski J, Gieleta R, et al. Numberical study for determination of pulse shaping design variables in SHPB apparutus[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2013, 61(2): 459-466. doi: 10.2478/bpasts-2013-0045
|
[20] |
Naghdabadi R, Ashrafi M J, Arghavani J. Experimental and numerical investigation of pulse-shaped split Hopkinson pressure bar test[J]. Material Science and Engineering: A, 2012, 539(3): 285-293. http://www.sciencedirect.com/science/article/pii/S0921509312001311
|
[21] |
Frew D J, Forrestal M, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics, 2002, 42(1): 93-106. http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1007/BF02411056
|
[22] |
Frew D J, Forrestal M, Chen W. Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar[J]. Experimental Mechanics, 2005, 45(2): 186-195. doi: 10.1007/BF02428192
|
[23] |
Ramirez H, Gonzalez R C. Finite-element simulation of wave propagation and dispersion in Hopkinson bar test[J]. Materials and Design, 2006, 27(1): 36-44. doi: 10.1016/j.matdes.2004.08.021
|
[24] |
李夕兵, 周子龙, 王卫华.运用有限元和神经网络为SHPB装置构造理想冲头[J].岩石力学与工程学报, 2005, 24(23): 4215-4218. http://d.wanfangdata.com.cn/Periodical/yslxygcxb200523003
Li Xi-bing, Zhou Zi-long, Wang Wei-hua. Construction of ideal striker for SHPB device based on FEM and neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4215-4218. http://d.wanfangdata.com.cn/Periodical/yslxygcxb200523003
|
[25] |
Franz C E, Follansbee P S, Wright J. New experimental techniques with the split Hopkinson pressure bar[C]//Berman I, Schroeder J W. 8th Internatinal Conference on High Energy Rate Fabrication, Pressure Vessel and Piping Division, ASME. San Antonio, TX, 1984.
|
[26] |
Follansbee P S. Mechanical testing and evaluations[M]. ASM Handbook, ASM, Materials Park, OH, 1985.
|
[27] |
Woo S C, Kim J T, Cho C H, et al. The dynamic compressive behavior of armor structural materials in split Hopkinson pressure bar test[J]. The Journal of Strain Analysis for Engineering Design, 2013, 48(7): 420-4369. doi: 10.1177/0309324713496084
|
[28] |
陶俊林, 田常津, 陈裕泽, 等. SHPB系统试件恒应变率加载实验方法研究[J].爆炸与冲击, 2004, 24(5): 413-418. http://www.bzycj.cn/article/id/9978
Tao Jun-lin, Tian Chang-jin, Chen Yu-ze, et al. Investigation of experimental method to obtain constant strain rate of specimen in SHPB[J]. Explosion and Shock Waves, 2004, 24(5): 413-418. http://www.bzycj.cn/article/id/9978
|
[29] |
Vecchio K S, Jiang F. Improved pulse shaping to achieve constant strain rate and stress equilibrium in split Hopkinson pressure bar testing[J]. Metallurgical and Materials Transactions: A, 2007, 38(11): 2655-2665. doi: 10.1007/s11661-007-9204-8
|
[30] |
Lee O S, Jin S P. Dynamic deformation behavior of bovine femur using SHPB[J]. Journal of Mechanical Science and Technology, 2011, 25(9): 2211-2215. doi: 10.1007/s12206-011-0602-x
|
[31] |
Li W M, Xu J Y. Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar[J]. Materials Science and Engineering: A, 2009, 513-514(7): 145-153. http://www.sciencedirect.com/science/article/pii/S0921509309001890
|
[32] |
汪洋, 李玉龙, 刘传雄.利用SHPB测定高应变率下冰的动态力学行为[J].爆炸与冲击, 2011, 31(2): 215-219. doi: 10.11883/1001-1455(2011)02-0215-05
Wang Yang, Li Yu-long, Liu Chuan-xiong. Dynamic mechanical behaviors of ice at high strain rates[J]. Explosion and Shock Waves, 2011, 31(2): 215-219. doi: 10.11883/1001-1455(2011)02-0215-05
|
[33] |
Chen W, Luo H. Dynamic Compressive responses of intact and damaged ceramics from a single split Hopkinson pressure bar experiment[J]. Experimental Mechanics, 2004, 44(3): 295-299. doi: 10.1007/BF02427896
|
[34] |
Yokoyama T, Nakai K, Yatim N H M. High strain-rate compressive behavior of bulk structural adhesives: Epoxy and methacrylate adhesives[J]. Journal of Solid Mechanics and Materials Engineering, 2012, 6(2): 131-143. http://adsabs.harvard.edu/abs/2012jsmme...6..131y
|
[35] |
Chen W, Lu F, Zhou B. A quartz-crystal-embeded split Hopkinson pressure bar for soft materials[J]. Experimental Mechanics, 2000, 40(1): 1-6. doi: 10.1007/BF02327540
|
[36] |
Song B, Syn C J, Grupido C L, et al. A long split Hopkinson pressure bar(LSHPB)for intermediate-rate characterization of soft materials[J]. Experimental Mechanics, 2008, 48(6): 809-815. doi: 10.1007/s11340-007-9095-z
|
[37] |
赵习金, 卢芳云, 王悟, 等.入射波整形技术的实验和理论研究[J].高压物理学报, 2004, 18(3): 231-236. http://d.wanfangdata.com.cn/Periodical/gywlxb200403007
Zhao Xi-jin, Lu Fang-yun, Wang Wu, et al. The experimental and theoretical study on the incident pulse shaping technique[J]. Chinese Journal of High Pressure Physics, 2004, 18(3): 231-236. http://d.wanfangdata.com.cn/Periodical/gywlxb200403007
|
[38] |
卢芳云, 陈荣, 林玉亮, 等.霍普金森杆实验技术[M].北京: 科学出版社, 2013.
|
[39] |
Erzar B, Forquin P. An experimental method to determine the tensile strength of concrete at high rates of strain[J]. Experimental Mechanics, 2010, 50(7): 941-955. doi: 10.1007/s11340-009-9284-z
|
[40] |
Shazly M, Prakash V, Draper S. Mechanical behavior of Gamma-met PX under uniaxial loading at elevated temperatures and high strain rates[J]. International Journal of Solids and Structures, 2004, 41(22/23): 6485-6503. https://www.sciencedirect.com/science/article/pii/S0020768304002410
|
[41] |
Saksala T, Hokka M, Kuokkala V, et al. Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 59(4): 128-138. http://www.sciencedirect.com/science/article/pii/S1365160912002468
|
[42] |
Chen R, Dai F, Qin J, Lu F. Flattened Brazilian disc method for determining the dynamic tensile stress-strain curve of low strength brittle solids[J]. Experimental Mechanics, 2013, 53(7): 1153-1159. doi: 10.1007/s11340-013-9733-6
|
[43] |
Dong S, Wang Y, Xia Y. A finite element analysis for using Brazilian disk in split Hopkinson pressure bar to investigate dynamic frac-ture behavior of brittle polymer materials[J]. Polymer Testing, 2006, 25(7): 943-952. doi: 10.1016/j.polymertesting.2006.06.003
|
[44] |
Dai F, Chen R, Xia K. A semi-circular bend technique for determining dynamic fracture toughness[J]. Experimental Mechanics, 2010, 50(6): 783-791. doi: 10.1007/s11340-009-9273-2
|
[45] |
Dai F, Chen R, Iqbal M J, et al. Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters[J]. International Journal of Rock Mechanics & Mining Sciences, 2010, 47(4): 606-613. https://www.sciencedirect.com/science/article/pii/S1365160910000535
|
[46] |
vora V M F, Jain N, Shukla A. Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites[J]. Materials Science and Engineering: A, 2003, 361(1/2): 358-366. https://www.sciencedirect.com/science/article/pii/S0921509303005367
|
[47] |
Jiang F, Vecchio K S, Rohatgi A. Analysis of modified split Hopkinson pressure bar dynamic fracture test using an inertia model[J]. International Journal of Fracture, 2004, 126(2): 143-164. doi: 10.1023/B:FRAC.0000026363.05467.2b
|
[48] |
Ogawa K, Higashida F. Impact three-point bending tests by applying ramped incident wave[J]. Reinforced Plastics, 1990, 36: 123-129.
|
[49] |
Kusaka T, Yamauchi Y, Kurokawa T. Effects of strain rate on mode Ⅱ interlaminar fracture toughness in carbon-fibre/epoxy laminated composites[J]. Journal de Physique Ⅳ: C, 1994, 4(8): 671-676. https://hal.archives-ouvertes.fr/docs/00/25/33/43/PDF/ajp-jp4199404C8102.pdf
|
[50] |
Kusaka T, Kurokawa T, Hojo M, et al. Evaluation of mode Ⅱ interlaminar fracture toughness of composite laminates under dynamic loading[J]. Key Engineering Materials, 1998, 141/142/143: 477-500. https://www.scientific.net/KEM.141-143.477
|
[51] |
Todo M, Takahashi K. Measurement of dynamic fracture toughness of polymeric materials using impact bend test[J]. Engineering Science Reports, Kyushu University, 1998, 20: 267-273. https://www.sciencedirect.com/science/article/pii/S0142941809001056
|
[52] |
Todo M, Tanaka A, Arakawa K. Examination of SHPB type impact fracture toughens testing method by dynamic finite element analysis[J]. Society of Materials Science of Japan, 2006, 55(9): 813-818. doi: 10.2472/jsms.55.813
|
[53] |
Jiang F, Vecchio K S. Dynamic effects in Hopkinson bar four-point bend fracture[J]. Metallurgical and Materials Transactions: A, 2007, 38(12): 2896-2906. doi: 10.1007/s11661-007-9301-8
|
[54] |
Nakamura T, Shih C F, Freund L B. Elastic-plastic analysis of a dynamically loaded circumferentially notched round bar[J]. Engineering Fracture Mechanics, 1985, 22(3): 437-452. doi: 10.1016/0013-7944(85)90144-4
|
[55] |
Wang Q Z, Jia X M. The flattened Brazilian disc specimen used for testing elastic, modulus, tensile strength and fracture toughness of brittle rocks: Analysis and numerical results[J]. International Journal of Rock Mechanics and Minner Science, 2004, 41(2): 245-253. doi: 10.1016/S1365-1609(03)00093-5
|
[56] |
Wang Q Z, Li W, Song X L. A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB[J]. Pure and Applied Geophysics, 2006, 163(5): 1091-1100. doi: 10.1007/s00024-006-0056-8
|
[57] |
张盛, 王启智.采用中心圆孔裂缝平台圆盘确定岩石的动态断裂韧度[J].岩土工程学报, 2006, 28(6): 723-728.
Zhang Sheng, Wang Qi-zhi. Method for determination of dynamic fracture toughness of rock using holed-crack flattened disc specimen[J]. Chinese Journal of Geotechical Engineering, 2006, 28(6): 723-728.
|
[58] |
Bacon C, Färm J, Lataillade J L. Dynamic fracture toughness determined from load-point displacement[J]. Experimental Mechanics, 1994, 20(1): 217-223. doi: 10.1007/BF02319758
|