Citation: | Li Run-zhi, Si Rong-jun. Simulation study of flow field characteristics of gas explosion in low temperature environment[J]. Explosion And Shock Waves, 2015, 35(6): 901-906. doi: 10.11883/1001-1455(2015)06-0901-06 |
[1] |
李润之, 司荣军.瓦斯浓度对爆炸压力及压力上升速率影响[J].西安科技大学学报, 2010, 30(1): 29-33. http://www.cnki.com.cn/Article/CJFDTotal-XKXB201001009.htm
Li Run-zhi, Si Rong-jun. Effect of gas concentration on the explosion pressure and pressure rise rate[J]. Journal of Xi'an University of Science and Technology, 2010, 30(1): 29-33. http://www.cnki.com.cn/Article/CJFDTotal-XKXB201001009.htm
|
[2] |
宫广东, 刘庆明, 白春华, 等. 10 m3爆炸罐中甲烷燃烧爆炸发展过程[J].实验力学, 2011, 26(1): 91-95. http://www.cnki.com.cn/Article/CJFDTotal-SYLX201101017.htm
Gong Guang-dong, Liu Qing-ming, Bai Chun-hua, et al. On the development of methane combustion and explosion in a 10 m3 explosion vessel[J]. Journal of Experimental Mechanics, 2011, 26(1): 91-95. http://www.cnki.com.cn/Article/CJFDTotal-SYLX201101017.htm
|
[3] |
邓军, 程方明, 罗振敏, 等.湍流状态下甲烷爆炸特性的实验研究[J].中国安全科学学报, 2008, 18(8): 85-88. http://www.cnki.com.cn/Article/CJFDTotal-ZAQK200808016.htm
Deng Jun, Cheng Fang-ming, Luo Zhen-min, et al. Experimental study on methane explosion property in turbulent flow[J]. China Safety Science Journal, 2008, 18(8): 85-88. http://www.cnki.com.cn/Article/CJFDTotal-ZAQK200808016.htm
|
[4] |
黄子超, 司荣军, 张延松, 等.初始温度对瓦斯爆炸特性影响的数值模拟[J].煤矿安全, 2012, 43(5): 5-7. http://www.cqvip.com/QK/94662X/201205/41874442.html
Huang Zi-chao, Si Rong-jun, Zhang Yan-song, et al. Numerical simulation of the influence of initial temperature on gas explosion characteristics[J]. Safety in Coal mines, 2012, 43(5): 5-7. http://www.cqvip.com/QK/94662X/201205/41874442.html
|
[5] |
李润之.点火能量与初始压力对瓦斯爆炸特性的影响研究[D].山东: 山东科技大学, 2010.
|
[6] |
Han J, Yamashita H, Yamamoto K. Numerical study on spark ignition characteristics of a methane-air mixture using detailed chemical kinetics(Effect of electrode temperature and energy channel length on flame propagation and relationship between minimum ignition energy and equivalence)[J]. Journal of Thermal Science and Technology, 2009, 4(2): 305-313. doi: 10.1299/jtst.4.305
|
[7] |
王长元, 张武, 陈久福, 等.煤矿区低浓度煤层气含氧液化工艺技术研究[J].矿业安全与环保, 2011, 38(4): 1-3. http://www.cnki.com.cn/Article/CJFDTotal-ENER201104000.htm
Wang Chang-yuan, Zhang Wu, Chen Jiu-fu, et al. Research on oxygen-containing liquefaction technology for low-concentration coal-bed gas in coal mining area[J]. Mining Safety & Environmental Protection, 2011, 38(4): 1-3. http://www.cnki.com.cn/Article/CJFDTotal-ENER201104000.htm
|
[1] | MAO Wenzhe, ZHANG Guotao, YANG Shuaishuai, XU Zihui, WANG Yan, JI Wentao. Characteristics of hydrogenated magnesium dust explosion flame propagating in a semi-enclosed space[J]. Explosion And Shock Waves, 2024, 44(6): 065401. doi: 10.11883/bzycj-2023-0363 |
[2] | GUO Hongzhan, ZHANG Yan, WANG Xiaorong. Explosion pressure characteristics of hydrogen-methane-ethanol mixtures[J]. Explosion And Shock Waves, 2023, 43(12): 125403. doi: 10.11883/bzycj-2023-0224 |
[3] | LIU Jiajia, ZHANG Yang, ZHANG Xiang, NIE Zishuo. Simulation study on propagation characteristics of gas explosion in Y-shaped ventilated coal face[J]. Explosion And Shock Waves, 2023, 43(8): 085401. doi: 10.11883/bzycj-2023-0018 |
[4] | XU Weizheng, HUANG Yu, LI Yexun, ZHAO Hongtao, ZHENG Xianxu, WANG Yanping. On formation mechanism of local cavitation in the near-wall flow field caused by an underwater explosion[J]. Explosion And Shock Waves, 2023, 43(3): 032201. doi: 10.11883/bzycj-2022-0075 |
[5] | Effect of right-angle duct and its section variation on gas explosion prevention[J]. Explosion And Shock Waves. |
[6] | ZHANG Yansong, LI Nan, GUO Rui, ZHANG Xinyan, ZHANG Gongyan, HUANG Xingwang. Relationship between pyrolysis kinetics and flame propagation characteristics of lauric acid and stearic acid dust explosion[J]. Explosion And Shock Waves, 2022, 42(7): 075402. doi: 10.11883/bzycj-2021-0470 |
[7] | CHENG Fangming, NAN Fan, XIAO Yang, LUO Zhenmin, NIU Qiaoxia. Experimental study on the suppression of methane-air explosion by CF3I and CO2[J]. Explosion And Shock Waves, 2022, 42(6): 065402. doi: 10.11883/bzycj-2021-0386 |
[8] | XU Xiaoyuan, SUN Jinhua, LIU Xuanya. Numerical simulation of methane-air explosion in a connected device with volume fraction gradient[J]. Explosion And Shock Waves, 2021, 41(4): 045401. doi: 10.11883/bzycj-2020-0086 |
[9] | WANG Qiuhong, SUN Yilin, LI Xin, JIANG Juncheng, ZHANG Mingguang, WANG Liubing. Numerical simulation on gas dispersions and vapor cloud explosions induced by gas released from an ethylene storage tank[J]. Explosion And Shock Waves, 2020, 40(12): 125401. doi: 10.11883/bzycj-2020-0202 |
[10] | JIA Hailin, XIANG Haijun, LI Dihui, ZHAI Rupeng. Suppression of explosion in pipelines with different blocking ratios by ultrafine water mist containing sodium chloride[J]. Explosion And Shock Waves, 2020, 40(4): 042201. doi: 10.11883/bzycj-2019-0268 |
[11] | LI Xiaobin, ZHANG Ruijie, CUI Liwei, ZHANG Qingli. Coupling analysis of explosion pressure and free radical change during methane explosion inhibited by urea[J]. Explosion And Shock Waves, 2020, 40(3): 032101. doi: 10.11883/bzycj-2019-0090 |
[12] | WEN Hu, YANG Yufeng, WANG Qiuhong, REN Xugang. Experimental study on micron-sized aluminum dust explosion in a rectangular pipe[J]. Explosion And Shock Waves, 2018, 38(5): 993-998. doi: 10.11883/bzycj-2016-0003 |
[13] | Deng Jun, Ren Xugang, Wang Qiuhong, Yang Yufeng. Explosion characteristics of zirconium dust cloud[J]. Explosion And Shock Waves, 2017, 37(3): 496-501. doi: 10.11883/1001-1455(2017)03-0496-06 |
[14] | Yu Minggao, Yang Yong, Pei Bei, Niu Pan, Zhu Xinna. Experimental study of methane explosion suppression by nitrogen twin-fluid water mist[J]. Explosion And Shock Waves, 2017, 37(2): 194-200. doi: 10.11883/1001-1455(2017)02-0194-07 |
[15] | Cao Wei-guo, Xu Sen, Liang Ji-yuan, Gao Wei, Pan Feng, Rao Guo-ning. Characteristics of flame propagation during coal dust cloud explosion[J]. Explosion And Shock Waves, 2014, 34(5): 586-593. doi: 10.11883/1001-1455(2014)05-0586-08 |
[16] | Li Run-zhi, Huang Zi-chao, Si Rong-jun. Influence of environmental temperature on gas explosion pressure and its rise rate[J]. Explosion And Shock Waves, 2013, 33(4): 415-419. doi: 10.11883/1001-1455(2013)04-0415-05 |
[17] | QIAN Hai-lin, WANG Zhi-rong, JIANG Jun-cheng. InfluenceofN2/CO2 mixtureonmethaneexplosion[J]. Explosion And Shock Waves, 2012, 32(4): 445-448. doi: 10.11883/1001-1455(2012)04-0445-04 |
[18] | LI Run-zhi. Numericalsimulationofcoaldustexplosioninducedbygasexplosion[J]. Explosion And Shock Waves, 2010, 30(5): 529-534. doi: 10.11883/1001-1455(2010)05-0529-06 |
[19] | JIN Ri-ya, HU Shuang-qi, BO Tao, ZHANG Ying-hao, YUAN Hong-su. Relation between explosion pressure and volume fraction of ClO2 gas[J]. Explosion And Shock Waves, 2009, 29(3): 333-336. doi: 10.11883/1001-1455(2009)03-0333-04 |
[20] | ZHONG Cheng-wen, LIU Jian-wen, ZHAO Shu-miao, ZHAO Hui-qiang. Numerical investigation of multi-cycle pulse detonation engine[J]. Explosion And Shock Waves, 2007, 27(6): 535-540. doi: 10.11883/1001-1455(2007)06-0535-06 |
1. | 刘可心,刘炜,孙亚松. 多因素耦合作用对甲烷爆炸特性的影响. 爆炸与冲击. 2023(03): 20-29 . ![]() | |
2. | 司荣军,李润之. 低浓度含氧瓦斯爆炸动力特性及防控关键技术. 煤炭科学技术. 2020(10): 17-36 . ![]() | |
3. | 孙从煌,曲艳东,刘万里,翟诚. 点火条件对密闭管道内预混氢气/空气燃爆特性的影响. 爆炸与冲击. 2018(03): 622-631 . ![]() | |
4. | 郭强,王明洋,高康华,赵天辉,孙松. 方形空间可燃气体爆燃泄爆实验及三维数值模拟研究. 爆炸与冲击. 2018(05): 1099-1105 . ![]() |