Volume 36 Issue 1
Oct.  2018
Turn off MathJax
Article Contents
Liao Shenfei, Zou Liyong, Liu Jinhong, Bai Jinsong, Wang Yanping. Experimental study of Richtmyer-Meshkov instabilityin a heavy gas cylinder interacting with reflected shock wave[J]. Explosion And Shock Waves, 2016, 36(1): 87-92. doi: 10.11883/1001-1455(2016)01-0087-06
Citation: Liao Shenfei, Zou Liyong, Liu Jinhong, Bai Jinsong, Wang Yanping. Experimental study of Richtmyer-Meshkov instabilityin a heavy gas cylinder interacting with reflected shock wave[J]. Explosion And Shock Waves, 2016, 36(1): 87-92. doi: 10.11883/1001-1455(2016)01-0087-06

Experimental study of Richtmyer-Meshkov instabilityin a heavy gas cylinder interacting with reflected shock wave

doi: 10.11883/1001-1455(2016)01-0087-06
  • Received Date: 2014-06-27
  • Rev Recd Date: 2014-11-25
  • Publish Date: 2016-01-25
  • The Richtmyer-Meshkov (RM) instability in a heavy gas (SF6) cylinder surrounded by ambient air is experimentally studied using a high-speed video camera in combination with a laser sheet. The evolving gas cylinder at intermediate to later stages was reshocked by the reflected shock wave at different times along with the changes of the endwall distance, which was achieved by designing a movable endwall for the test section in a horizontal shock tube. It is demonstrated that different endwall distances result in different evolutions of the reshocked interface. For a short endwall distance, the effect of the baroclinic mechanism on the interface evolution is significant and a secondary vortex pair is formed, while for a long endwall distance, the effect of the pressure perturbation mechanism is significant and the streamwise compression of the interface instead of vortex structure is clearly observable. In addition, quantitative analysis is conducted by measuring the position and the integral scale of the interface from sequences of images.
  • loading
  • [1]
    Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Communications on Pure and Applied Mathematics, 1960, 13(2):297-319. doi: 10.1002/(ISSN)1097-0312
    [2]
    Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dynamics, 1969, 4(5):101-104. http://d.old.wanfangdata.com.cn/Periodical/wlxb201723027
    [3]
    Brouillette M. The Richtmyer-Meshkov instability[J]. Annual Review of Fluid Mechanics, 2002, 34(1):445-468. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_d14d4036fc1bbf9f6fbac10be75a916d
    [4]
    Benjamin R F. An experimenter's perspective on validating codes and models with experiments having shock-accelerated fluid interfaces[J]. Computing in Science and Engineering, 2004, 6(5):40-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=14c01b751f367d4640d3959ad5183dec
    [5]
    Samtaney R, Zabusky N. Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: Models and scaling laws[J]. Journal of Fluid Mechanics, 1994, 269(12):45-78. doi: 10.1017-S0022112094001485/
    [6]
    Jacobs J W. The dynamics of shock accelerated light and heavy gas cylinders[J]. Physics of Fluids, 1993, 5(9):2239-2247. doi: 10.1063/1.858562
    [7]
    Prestridge K, Zoldi C A, Vorobieff P, et al. Experiments and simulations of instabilities in a shock-accelerated gas cylinder[C]//Schilling O. Proceedings of the 8th International Workshop on the Physics of Compressible Turbulent Mixing. Lawrence Livermore National Laboratory, 2001: 36.
    [8]
    Vorobieff P, Mohamed N G, Tomkins C, et al. Scaling evolution in shock-induced transition to turbulence[J]. Physical Review E, 2003, 68(6):065301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c0ad565e188217d9adab36dd9d4cb93
    [9]
    Vorobieff P, Tomkins C, Kumar S, et al. Secondary instabilities in shock-induced transition to turbulence[J]. Advances in Fluid Mechanics, 2004, 40:139-148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026697950
    [10]
    Tomkins C, Kumar S, Orlicz G, et al. An experimental investigation of mixing mechanisms in shock-accelerated flow[J]. Journal of Fluid Mechanics, 2008, 611(3):131-150. doi: 10.1017-S0022112008002723/
    [11]
    Pfalzner S. An introduction to inertial confinement fusion[M]. Boca Raton: CRC Press, 2006.
    [12]
    Brouillette M, Sturtevant B. Experiments on the Richtmyer-Meshkov instability: Small-scale perturbations on a plane interface[J]. Physics of Fluids, 1993, 5(4):916-930. http://cn.bing.com/academic/profile?id=50f05cbd05fbafd5cb6a66f2f91a4a50&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    Vetter M, Sturtevant B. Experiments on the Richtmyer-Meshkov instability of an air/SF6 interface[J]. Shock Waves, 1995, 4(5):247-252. doi: 10.1007/BF01416035
    [14]
    Balakumar B, Orlicz G, Tomkins C, et al. Simultaneous particle-image velocimetry-planar laser-induced fluorescence measurements of Richtmyer-Meshkov instability growth in a gas curtain with and without reshock[J]. Physics of Fluids, 2008, 20:124103. doi: 10.1063/1.3041705
    [15]
    Balakumar B J, Orlicz G C, Ristorcelli J R, et al. Turbulent mixing in a Richtmyer-Meshkov fluid layer after reshock: Velocity and density statistics[J]. Journal of Fluid Mechanics, 2012, 696:67-93. doi: 10.1017/jfm.2012.8
    [16]
    Tomkins C, Balakumar B, Orlicz G, et al. Evolution of the density self-correlation in developing Richtmyer-Meshkov turbulence[J]. Journal of Fluid Mechanics, 2013, 735:288-306. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=FLM735FLMFLM735S0022112013004308h.xml
    [17]
    王显圣, 司廷, 罗喜胜, 等.反射激波冲击重气柱的RM不稳定性数值研究[J].力学学报, 2012, 44(4):664-672. doi: 10.6052/0459-1879-11-245

    Wang Xiansheng, Si Ting, Luo Xisheng, et al. Numerical study on the RM instability of a heavy-gas cylinder interacted with reshock[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4):664-672. doi: 10.6052/0459-1879-11-245
    [18]
    邹立勇, 刘金宏, 谭多望, 等.弱激波冲击无膜重气柱和气帘界面的实验研究[J].高压物理学报, 2010, 24(4):241-247. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201004001.htm

    Zou Liyong, Liu Jinhong, Tan Duowang, et al. Experimental study on the membraneless heavy gas cylinder and gas curtain interfaces impacted by a weak shock wave[J]. Chinese Journal of High Pressure Physics, 2010, 24(4):241-247. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201004001.htm
    [19]
    Zou L Y, Liu C L, Tan D W, et al. On interaction of shock wave with elliptic gas cylinder[J]. Journal of Visualization, 2010, 13(4):347-353. http://cn.bing.com/academic/profile?id=36dbc73bde1390fc0c933769376e10f7&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (4279) PDF downloads(206) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return