Zhao Xin, Ding Jifeng, Han Zengyao, Zou Yuanjie. Review of pyroshock simulation andresponse prediction methods in spacecraft[J]. Explosion And Shock Waves, 2016, 36(2): 259-268. doi: 10.11883/1001-1455(2016)02-0259-10
Citation: Zhao Xin, Ding Jifeng, Han Zengyao, Zou Yuanjie. Review of pyroshock simulation andresponse prediction methods in spacecraft[J]. Explosion And Shock Waves, 2016, 36(2): 259-268. doi: 10.11883/1001-1455(2016)02-0259-10

Review of pyroshock simulation andresponse prediction methods in spacecraft

doi: 10.11883/1001-1455(2016)02-0259-10
  • Received Date: 2014-07-27
  • Rev Recd Date: 2014-08-21
  • Publish Date: 2016-03-25
  • The pyroshock environment of satellite-rocket separation is the severest mechanical environment during launching, which is characterized by transient high acceleration and high frequency. While it does not necessarily cause a satellite any structural damage, pyroshock may incur most serious damages on a satellite's precision electronic equipments containing crystals and brittle materials, resulting in either the failure of the entire mission or even catastrophic accidents. Therefore, during the development of a new spacecraft, an accurate prediction of the pyroshock environment and a reasonable specification and determination for components are essential. In this paper, a research review of ground simulation test methods and the pyroshock response prediction is presented, and the technological gap between China and countries highly developed in field is pointed out. In addition to that, according to the requirements of China's domestic space engineering, the main research directions in the pyroshock are proposed.
  • [1]
    Dynamic environmental criteria: NASA-HDBK-7005[S]. USA, 2001.
    [2]
    Pyroshock test criteria: NASA-STD-7003A[S]. USA, 2011.
    [3]
    Environment engineering considerations and laboratory tests: MIL-STD-810F[S]. USA: Department of Defense, 2000.
    [4]
    Filippi E. Pyroshock simulation using the alcatel etca test facility[C]//Launch Vehicle Vibrations. First European Conference. Toulouse: CNES, 1999.
    [5]
    Meoning C J. Pyrotechnic shock flight failures[C]//Institute of Environmental Sciences Pyrotechnic Shock Tutorial Program, 31st Annual Technical Meeting. 1985.
    [6]
    Mcgrath M B, Rader W P. Aerospace systems pyrotechnic shock data. Volume Ⅶ: Investigation of mass loading effects[R]. N71-19250, 1970.
    [7]
    Environment engineering considerations and laboratory tests[M]. USA: Department of Defense, 2000.
    [8]
    丁继锋, 赵欣, 韩增尧, 等.航天器火工冲击技术研究进展[J].宇航学报, 2014, 35(12):1339-1349. doi: 10.3873/j.issn.1000-1328.2014.12.001

    Ding Jifeng, Zhao Xin, Han Zengyao. Research development of spacecraft pyroshock technique[J]. Journal of Astronautics, 2014, 35(12):1339-1349. doi: 10.3873/j.issn.1000-1328.2014.12.001
    [9]
    Piersol A G, Paez T L. Harris' shock and vibration handbook[M]. 6th ed. New York: The McGraw-Hill Companies, Inc, 2010.
    [10]
    军用装备实验室环境试验方法第27部分: 爆炸分离冲击实验: GJB 150.27-2009[S]. 2009.
    [11]
    Lee J R, Chia C C, Kong C W. Review of pyroshock wave measurement and simulation for space systems[J]. Measurement, 2012, 45(4):631-642. doi: 10.1016/j.measurement.2011.12.011
    [12]
    [13]
    Girard A, Pont C, Courau E. Very first results form pyroshock database for satellites[C]//European Conference on Spacecaft Structures, Materials & Mechenical Testing 2005. Noordwijk, The Netherlands, 2005.
    [14]
    Courau E, Roy P. Ariane 5 shock environment qualification for an earth observation satellite[C]//European Conference on Spacecraft Structure, Material & Mechanical Testing 2005. Noordwijk, The Netherlands, 2005.
    [15]
    Filippi E, Dolez F. Development of the alcatel etca pyroshock test facility[C]//European Conference on Spacecraft Structures, Materials and Mechanical Testing 1999. Braunschweig, Germany, 1999.
    [16]
    Filippi E, Attouoman H, Dolez B. Pyroshcok simulation using the alcatel etca test facility[C]//Launch Vehicle Vibrations. First European Conference. Toulouse: CNES, 1999.
    [17]
    Dilhan D, Piquereau A, Bonnes L. Definition and manufacturing of the pyroshock bench[C]//7th ESA/CNES International Workshop on Space Pyrotechnics ESTEC. 2008.
    [18]
    刘斌, 吴江.用火工品产生中高量级冲击的试验技术研究[J].强度与环境, 2007, 34(3):8-13. doi: 10.3969/j.issn.1006-3919.2007.03.002

    Liu Bin, Wu Jiang. A study of producing high level shock environment by pyrotechnic device[J]. Structure & Environment Engineering, 2007, 34(3):8-13. doi: 10.3969/j.issn.1006-3919.2007.03.002
    [19]
    Dilhan D, Cipolla V, Grzeskowiak H. Pyroshock generation[C]//European Conference on Spacecaft Structures, Materials & Mechenical Testing 2005. Noordwijk, The Netherlands, 2005.
    [20]
    Ali K, Juan F. Tunable beam pyroshock simulation system[C]//Spacecraft and Launch Vehicle Dynamic Environments Workshop. California, USA, 2007.
    [21]
    Benedetti M D, Garofalo G, Zumpano M, et al. On the damping effect due to bolted junctions in space structures subjected to pyro-shock[J]. Acta Astronautica, 2007, 60(12):947-956. doi: 10.1016/j.actaastro.2006.11.011
    [22]
    Himelblau H, Piersol A G, Wise J H, et al. Handbook for dynamic data acquisition and analysis. Appendix A: Pyroshock data acquisition and analysis[M]. Mt Prospect, IL: Institute of Environmental Sciences, 1994.
    [23]
    Evans M J, Neubert V H, Bement L J. Measurement, data analysis, and prediction of oyrotechnic shock from pin-pullers and separation joints[J]. Shock and Vibration Bulletin, 1987, 57(2). https://www.researchgate.net/publication/23894381_Measurement_data_analysis_and_prediction_of_pyrotechnic_shock_from_pin-pullers_and_separation_joints
    [24]
    Smallwood D O. An improved recursive formula for calculating shock response spectra[J]. Shock and Vibration Bulletin, 1981, 51(2):211-217. http://cn.bing.com/academic/profile?id=97d8a3b9117c4662f9b75141bb3d9e86&encoded=0&v=paper_preview&mkt=zh-cn
    [25]
    Hughes W O, Mcnelis A M. Statistical analysis of a large sample size pyroshock test data set including post flight data assessment[R]. Cleveland, Ohio: Glenn Research Center, 2009.
    [26]
    Shi Q, Ando S, Seko H, et al. The summarization of pyroshock testing data and SRS level prediction methodology[C]//The 5th International Symposium on Environmental Testing for Space Programmes. Noordwijk, The Netherlands, 2004.
    [27]
    Ullio R, Marucchi-Chierro P C. Utlization of prediction methods in the shock environment evaluation[C]//The European Conference on Spacecraft Structure, Materials and Mechanical Testing 2001. Noofdwijk, The Netherlands, 2001.
    [28]
    Girard A, Courau E, Bugeat L P. Pyroshock database for satellites[C]//European Conferenc on Spacecraft Structures, Materials and Mechanical Testing 2000. Noordwijk, the Netherlands, 2000.
    [29]
    Zukas J A. Introduction to hydrocodes[M]. Elsevier, 2004.
    [30]
    白金泽.LS-DYNA 3D理论基础与实例分析[M].北京:科学出版社, 2005.
    [31]
    张雄, 王天舒.计算动力学[M].北京:清华大学出版社, 2007.
    [32]
    Mary S, Cipolla V, Courau E, et al. Shock propagation simulation using FEM software[C]//European Conference on Spacecaft Structures, Materials & Mechenical Testing 2005. Noordwijk, The Netherlands, 2005.
    [33]
    姚德源, 王其政.统计能量分析原理及其应用[M].北京:北京理工大学出版社, 1995.
    [34]
    Manning J E, Lee K. Predicting mechanical shock transmission[J]. Shock and Vibration Bulletin, 1968, 37(4):65-70.
    [35]
    Sun H B, Sun J C, Richards E J. Prediction of total loss factors of structures. Part Ⅲ: Effective loss factors in quasi-transient conditions[J]. Journal of Sound and Vibration, 1986, 106(3):465-479. doi: 10.1016/0022-460X(86)90192-6
    [36]
    Fahy J F, Yao D Y. Power flow between non-conservatively coupled oscillators[J]. Journal of Sound and Vibration, 1987, 114(1):1-11. doi: 10.1016-S0022-460X(87)80227-4/
    [37]
    Borello G. SEA航天应用[M]. Belgium: Inter AC, 2010.
    [38]
    Borello G, Courjal A. Modelling payloads using SEA for vibroacoustic and shock prediction[R]. France: Inter AC-L'Union, 2005.
    [39]
    SEA: Shock module of SEA+ user's guide[M]. Inter AC, Inc, 2013.
    [40]
    Dalton E C, Chambers B S. Analysis and validation testing of impulsive load response in complex, multi-compartmented structures[C]//Proceedings of the 36th AIAA Structures, Structural Dynamics, and Materials Conference. 1995.
    [41]
    Dalton E C, Frydman A, Li A, et al. High frequency shock predictions in armored vehicles: Ags case study[C]//Proceedings of the 16th International Symposium on Ballistics. San Francisco, CA, 1996.
    [42]
    Dalton E C, Loper R B, Frydman A, et al. Simulation of ballistic shock in composite armored vehicles[C]//Proceedings of the 68th Shock and Vibration Symposium. 1997.
    [43]
    Dalton E C. High frequency shock prediction, short course notes[M]. Military Technology, Inc, 1999.
    [44]
    Ullio R, Marucchi-Chierro P C. Auto SEA shock application on shock event simulation: Study case and problematics encountered[R]. Toulouse: Euro PAM, 2006.
    [45]
    Lee D O, Han J H, Jang H W, et al. Shock respones prediction of a low altitude earth observation satellite during launch vechicle separation[J]. International Journal of Aeronautical & Space Sciences, 2010, 11(1):49-57.
    [46]
    王军评, 毛勇建, 黄含军, 等.统计能量分析法在爆炸分离冲击响应预示中的应用[J].航天器环境工程, 2011, 28(5):414-420. doi: 10.3969/j.issn.1673-1379.2011.05.002

    Wang Junping, Mao Yongjian, Huang Hanjun, et al. Application of statistical energy analysis method in prediction of pyroshock responses[J]. Spacecraft Environment Engineering, 2011, 28(5):414-420. doi: 10.3969/j.issn.1673-1379.2011.05.002
    [47]
    柯受全, 金恂叔.卫星环境工程和模拟试验(下)[M].北京:宇航出版社, 1996.
    [48]
    焦亮, 邓明.爆炸分离冲击试验分析[J].电子产品可靠性与环境试验, 2013, 31(1):31-34. doi: 10.3969/j.issn.1672-5468.2013.01.007

    Jiao Liang, Deng Ming. The pyroshock test[J]. Electronic Product Reliability and Environmental Testing, 2013, 31(1):31-34. doi: 10.3969/j.issn.1672-5468.2013.01.007
    [49]
    马斌捷, 张建华, 吴江.火工品爆炸加载方法在火箭分离冲击环境模拟试验中的应用与效果[J].强度与环境, 2007, 34(5):1-7. doi: 10.3969/j.issn.1006-3919.2007.05.001

    Ma Binjie, Zhang Jianhua, Wu Jiang. Applications and effects of pyrotechnic explode loading in shock environment simulation experiment of rocket separation[J]. Structure & Enviroment Engineering, 2007, 34(5):1-7. doi: 10.3969/j.issn.1006-3919.2007.05.001
    [50]
    毕文辉, 严楠, 何春全, 等.航天火工品爆炸冲击多参量的测试[J].计测技术, 2009, 29(3):14-16. doi: 10.3969/j.issn.1674-5795.2009.03.005

    Bi Wenhui, Yan Nan, He Chunquan, et al. Measurement of pyroshock for explosive initiating device used in spacecraft[J]. Metrology & Measurement Technology, 2009, 29(3):14-16. doi: 10.3969/j.issn.1674-5795.2009.03.005
    [51]
    张欢, 刘天雄, 李长江, 等.航天器火工冲击环境防护技术现状与应用[J].航天器工程, 2014, 23(2):104-113. doi: 10.3969/j.issn.1673-8748.2014.02.018

    Zhang Huan, Liu Tianxiong, Li Changjiang, et al. Status and application analysis of spacecraft pyroshock protection techniques[J]. Spacecraft Engineering, 2014, 23(2):104-113. doi: 10.3969/j.issn.1673-8748.2014.02.018
    [52]
    毛勇建, 李玉龙, 陈颖, 等.炸药条加载圆柱壳的数值模拟(Ⅱ):解耦分析与实验验证[J].高压物理学报, 2013, 27(1):76-82. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201301012.htm

    Mao Yongjian, Li Yulong, Chen Ying, et al. Numerical simulation of cylindrical shell loaded by explosive rods (Ⅱ): Decoupling analysis and experimental validation[J]. Chinese Journal of High Pressure Physics, 2013, 27(1):76-82. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201301012.htm
    [53]
    毛勇建, 李玉龙, 陈颖, 等.炸药条加载圆柱壳的数值模拟(Ⅰ):流固耦合模拟[J].高压物理学报, 2012, 26(2):155-162. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201202007.htm

    Mao Yongjian, Li Yulong, Chen Ying, et al. Numerical simulation of cylindrical shell loaded by explosive rods (Ⅰ): Fluid-structure interaction simulation[J]. Chinese Journal of High Pressure Physics, 2012, 26(2):155-162. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201202007.htm
    [54]
    王军评, 毛勇建, 黄含军.点式火工分离装置冲击载荷作用机制的数值模拟研究[J].振动与冲击, 2013, 32(2):9-13. doi: 10.3969/j.issn.1000-3835.2013.02.003

    Wang Junping, Mao Yongjian, Huang Hanjun. Numerical simulation for impulsively loading mechanism of a point pyrotechnic separation device[J]. Journal of Vibration and Shock, 2013, 32(2):9-13. doi: 10.3969/j.issn.1000-3835.2013.02.003
  • Relative Articles

    [1]WANG Jinneng, GUO Xin, JING Lin, WANG Kaiyun. Finite element simulations of wheel-rail impact response induced by wheel tread spalling of high-speed trains[J]. Explosion And Shock Waves, 2022, 42(4): 045103. doi: 10.11883/bzycj-2021-0374
    [2]Li Dian, Zhu Xi, Hou Hailiang, Zhong Qiang. Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration[J]. Explosion And Shock Waves, 2016, 36(1): 1-8. doi: 10.11883/1001-1455(2016)01-0001-08
    [3]Zhu Xiu-yun, Pan Rong, Lin Gao, Li Liang. FEM analysis of impact experiments with steel plated concrete walls based on ANSYS/LS-DYNA[J]. Explosion And Shock Waves, 2015, 35(2): 222-228. doi: 10.11883/1001-1455(2015)02-0222-07
    [4]Li Yan-yan, Zheng Zhi-jun, Yu Ji-lin, Wang Chang-feng. Finite element analysis on deformation modes of closed-cell metallic foam[J]. Explosion And Shock Waves, 2014, 34(4): 464-470. doi: 10.11883/1001-1455(2014)04-0464-07
    [5]CAO Li-na, HAN Xiu-qing, ZHANG Yong-guang, CAO Yu-xin. Finiteelementanalysisofdetonationwaveinterference amongperforatingbullet[J]. Explosion And Shock Waves, 2011, 31(2): 220-224. doi: 10.11883/1001-1455(2011)02-0220-05
    [6]ZHANG Yong-kang, LI Yu-long, WANG Hai-qing. Finite element analysis of bird impact damage to representative beam-edge structure[J]. Explosion And Shock Waves, 2008, 28(3): 236-242. doi: 10.11883/1001-1455(2008)03-0236-07
    [7]SUN Zhen-sheng, ZHANG Shi-ying. Discontinuous Galerkin method and computation of fluid-rigid interaction[J]. Explosion And Shock Waves, 2008, 28(1): 80-85. doi: 10.11883/1001-1455(2008)01-0080-06
    [8]ZHENG Bo, WANG An-wen. Finite element analysis for elastic-plastic dynamic postbuckling of bars subjected to axial impact[J]. Explosion And Shock Waves, 2007, 27(2): 126-130. doi: 10.11883/1001-1455(2007)02-0126-05
    [9]WEN Yu-quan, HONG Dong-pao, WANG Wei. Study on theory and method of reliability assessment of explosive initiator based on testing entropy[J]. Explosion And Shock Waves, 2007, 27(6): 553-556. doi: 10.11883/1001-1455(2007)06-0553-04
    [10]ZHANG Wei, MA Wen-lai, GUAN Gong-shun, PANG Bao-jun. Numerical simulation of non-spherical projectiles hypervelocity impact on spacecraft shield configuration[J]. Explosion And Shock Waves, 2007, 27(3): 240-245. doi: 10.11883/1001-1455(2007)03-0240-06
    [11]MI Shuang-shan, ZHANG Xi-en, TAO Gui-ming. Finite element analysis of spherical fragments penetrating LY-12 aluminum alloy target[J]. Explosion And Shock Waves, 2005, 25(5): 477-480. doi: 10.11883/1001-1455(2005)05-0477-04
    [12]REN Bo, WANG Cheng. Parallel impact/penetration finite element method simulation techniques[J]. Explosion And Shock Waves, 2005, 25(3): 260-264. doi: 10.11883/1001-1455(2005)03-0260-05
  • Cited by

    Periodical cited type(13)

    1. 谭祖玮,潘忠文,胡振兴,张新宇,彭慧莲. 典型火工分离螺母装置冲击来源及传播特性研究. 火工品. 2025(01): 18-26 .
    2. 杜烨,周炜智,黄求安,李强. 装药过载环境力等效模拟实验技术研究. 爆炸与冲击. 2024(07): 97-106 . 本站查看
    3. 胡杰,方叶. 爆炸分离冲击下中远场连接界面多点时域载荷反演方法研究. 装备环境工程. 2024(07): 82-88 .
    4. 曹增强,刘广通,左杨杰. 利用脉冲电磁力加载的螺接/铆接接头冲击性能测试装置及力加载方法. 航天器环境工程. 2021(04): 466-471 .
    5. 林天然,李震. 统计能量分析方法及应用综述. 振动与冲击. 2021(13): 222-238 .
    6. 马庆鑫,纪玉杰. 活塞式石蜡驱动器摩擦力试验研究. 一重技术. 2021(06): 37-40 .
    7. 王刚,杨昌昊,祁玉峰. 火星进入舱开伞弹伞载荷动力放大系数研究与试验验证. 宇航学报. 2021(11): 1355-1364 .
    8. 杨光,刘波,李正举,邓明乐. 质量特性对航天器火工冲击传递影响仿真分析. 中国空间科学技术. 2020(02): 62-69 .
    9. 杨光,刘波,李正举,张程. 航天器火工冲击源力函数模拟分析. 航天器环境工程. 2020(04): 348-354 .
    10. 温华兵,吴俊杰,马正刚,Vasilev Evgeni. 浮冰碰撞下船舶舱室瞬态噪声分析及控制. 中国造船. 2020(03): 121-130 .
    11. 王子寒,严微,曹哲,刘山山,程会艳,刘梦尧. 一种强散射杂光下的快速星点提取算法. 空间控制技术与应用. 2020(06): 63-68 .
    12. 王军评,毛勇建,吕剑,黄含军. 爆炸螺栓冲击响应的主要影响因素研究. 振动与冲击. 2019(13): 42-49 .
    13. 李会娜,高庆,卢鑫,秦朝红. 基于传递特性的航天器在轨冲击环境预示方法研究. 航天器环境工程. 2019(04): 340-343 .

    Other cited types(10)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (7481) PDF downloads(850) Cited by(23)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return