Citation: | Xu Chunguang, Dong Haibo, Liu Jun. An accurate conservative interpolation method for the mixed gridbased on the intersection of grid cells[J]. Explosion And Shock Waves, 2016, 36(3): 305-312. doi: 10.11883/1001-1455(2016)03-0305-08 |
[1] |
郭正, 刘君, 瞿章华.非结构动网格在三维可动边界问题中的应用[J].力学学报, 2003, 35(2):140-146. http://d.old.wanfangdata.com.cn/Periodical/lxxb200302003
Guo Zheng, Liu Jun, Qu Zhanghua. Dynamic unstructured grid method with applications to 3d unsteady flows involving moving boundaries[J]. Acta Mechanica Sinica, 2003, 35(2):140-146. http://d.old.wanfangdata.com.cn/Periodical/lxxb200302003
|
[2] |
Zeeuw D D, Powell K G. An adaptively refined Cartesian mesh solver for the Euler equations[J]. Journal of Computational Physics, 1993, 104(1), 104:56-68. http://cn.bing.com/academic/profile?id=0b27e7efb53cada94a6d8ccfd529a00b&encoded=0&v=paper_preview&mkt=zh-cn
|
[3] |
白晓征.包含运动界面的爆炸流场数值模拟方法及其应用[D].长沙: 国防科技大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-90002-2010147319.htm
|
[4] |
徐春光, 白晓征, 刘瑜, 等.爆炸近区流场的数值模拟方法研究[J].兵工学报, 2012, 33(5):565-573. http://d.old.wanfangdata.com.cn/Periodical/bgxb201205010
Xu Chunguang, Bai Xiaozheng, Liu Yu, et al. Research on numerical simulation method of near-field flows in air blast[J]. Acta Armmamentarii, 2012, 33(5):565-573. http://d.old.wanfangdata.com.cn/Periodical/bgxb201205010
|
[5] |
Pärt-Enander E, Sj green B. Conservative and non-conservative interpolation between overlapping grids for finite volume solutions of hyperbolic problems[J]. Computers and Fluids, 1994, 23(3):551-574. http://cn.bing.com/academic/profile?id=1b04887df045469780080f87398e4aca&encoded=0&v=paper_preview&mkt=zh-cn
|
[6] |
Margolin L G, Shashkov M. Second-order sign-preserving conservative interpolation (remapping) on general grids[J]. Journal of Computational Physics, 2002, 184(1):266-298.
|
[7] |
Farrell P E, Piggott M D, Pain C C, et al. Conservative interpolation between unstructured meshes via supermesh construction[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(33/34/35/36):2632-2642. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211806853/
|
[8] |
Farrell P E, Maddison J R. Conservative interpolation between volume meshes by local Galerkin projection[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(1/2/3/4):89-100. http://cn.bing.com/academic/profile?id=aac95ff70f0ddb440fb234e1c139f5d9&encoded=0&v=paper_preview&mkt=zh-cn
|
[9] |
Menon S, Schmidt D P. Conservative interpolation on unstructured polyhedral meshes: An extension of the supermesh approach to cell-centered finite-volume variables[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(41/44):2797-2804.
|
[10] |
郭正.包含运动边界的多体非定常流场数值模拟方法研究[D].长沙: 国防科技大学, 2002. http://cdmd.cnki.com.cn/Article/CDMD-90002-2003097667.htm
|
[11] |
刘君, 白晓征, 郭正.非结构动网格计算方法及其在包含运动界面的流场模拟中的应用[M].长沙:国防科技大学出版社, 2009.
|
[1] | YANG Juan, WEI Zhixun, NIU Jianghao, YAN Xiaoliang, ZHANG Qingsong. Explosion hazard of thermal runaway in aviation lithium-ion batteries under low-temperature cycling aging conditions[J]. Explosion And Shock Waves, 2025, 45(2): 021432. doi: 10.11883/bzycj-2024-0352 |
[2] | YUAN Shuai, TAI Feng, QIAN Xinming, CHENG Donghao. Prediction methods for lower explosion limit of thermal runaway products of lithium-iron phosphate batteries[J]. Explosion And Shock Waves, 2025, 45(2): 021434. doi: 10.11883/bzycj-2023-0452 |
[3] | ZHANG Baoyong, TAO Jin, CUI Jiarui, ZHANG Yiyu, WANG Yajun, HAN Yonghui, SUN Man. Absorption characteristics of methane-air mixture explosion energyby foam metal with a corrugated surface against explosion[J]. Explosion And Shock Waves, 2023, 43(11): 115401. doi: 10.11883/bzycj-2023-0084 |
[4] | NING Ye, HE Meng, QI Chang, CHEN Sheng, YAN Xingqing, YU Jianliang. Experiment and prediction methods on the explosion limit of the ternary flammable gas mixture[J]. Explosion And Shock Waves, 2023, 43(4): 045401. doi: 10.11883/bzycj-2022-0120 |
[5] | ZHONG Feixiang, ZHENG Ligang, MA Hongyan, DU Depeng, WANG Xi, PAN Rongkun. A study of explosion dynamics of a CH4/O2/CO2 premixed system[J]. Explosion And Shock Waves, 2022, 42(1): 012101. doi: 10.11883/bzycj-2021-0191 |
[6] | LI Guoqing, ZHANG Jiwei, WU Jun, WANG Shimao, QI Xiaoguang, ZHANG Peili, QI Sheng. Characteristics of closed and vented explosions of gasoline-air mixture in a square tube[J]. Explosion And Shock Waves, 2020, 40(10): 102101. doi: 10.11883/bzycj-2019-0416 |
[7] | PEI Bei, WEI Shuangming, CHEN Liwei, PAN Rongkun, WANG Yan, YU Minggao, LI Jie. Effect of CO2-ultrafine water mist on initial explosion characteristics of CH4/Air[J]. Explosion And Shock Waves, 2019, 39(2): 025402. doi: 10.11883/bzycj-2018-0147 |
[8] | YU Jianliang, YAO Futong, YU Xiaozhe, YAN Xingqing, LUO Can, ZHANG Lianzhuo. Experimental study on the influence of high temperature and high pressure on the upper limit of explosion of ethane in oxygen[J]. Explosion And Shock Waves, 2019, 39(12): 122101. doi: 10.11883/bzycj-2018-0381 |
[9] | LYU Qishen, ZANG Xiaowei, PAN Xuhai, MA Peng, YU Hao, JIANG Juncheng. Effects of temperature and concentration on characteristic parameters of methanol explosion[J]. Explosion And Shock Waves, 2019, 39(9): 095402. doi: 10.11883/bzycj-2018-0121 |
[10] | Gao Na, Zhang Yansong, Hu Yiting. Experimental study on methane-air mixtures explosion limits at normal and elevated initial temperatures and pressures[J]. Explosion And Shock Waves, 2017, 37(3): 453-458. doi: 10.11883/1001-1455(2017)03-0453-06 |
[11] | Zhang Peili, Du Yang. Experimental estimation of the combustion regime in the oil-gas explosion process[J]. Explosion And Shock Waves, 2016, 36(5): 688-694. doi: 10.11883/1001-1455(2016)05-0688-07 |
[12] | Gao Na, Zhang Yansong, Hu Yiting. Experimental study on gas explosion hazard under different temperatures and pressures[J]. Explosion And Shock Waves, 2016, 36(2): 218-223. doi: 10.11883/1001-1455(2016)02-0218-06 |
[13] | Wu Song-lin, Du Yang, Li Guo-qing, Zhang Pei-li. Reduced mechanism and analysis for thermal deflagration of C1-C4 alkane mixture[J]. Explosion And Shock Waves, 2015, 35(5): 641-650. doi: 10.11883/1001-1455(2015)05-0641-10 |
[14] | Gao Hui-hui, Zhang Bo, Qiao Jian-jiang, Yang Shao-peng, Chen Ting, Chen Xiao. Explosion characteristics of dimethyl ether/air/argon mixtures[J]. Explosion And Shock Waves, 2015, 35(5): 753-757. doi: 10.11883/1001-1455(2015)05-0753-05 |
[15] | ZHANG Bo, Lee J H S, BAI Chun-hua. CriticalenergyfordirectinitiationofC2H4-O2 mixture[J]. Explosion And Shock Waves, 2012, 32(2): 113-120. doi: 10.11883/1001-1455(2012)02-0113-08 |
[16] | ZHENG Yuan-pan, JING Guo-xun, ZHANG Ya-li. Areviewofexplosioncharacteristicsofmethane andcarbondioxidegasmixtures[J]. Explosion And Shock Waves, 2012, 32(2): 203-210. doi: 10.11883/1001-1455(2012)02-0203-08 |
[17] | QIAN Hai-lin, WANG Zhi-rong, JIANG Jun-cheng. InfluenceofN2/CO2 mixtureonmethaneexplosion[J]. Explosion And Shock Waves, 2012, 32(4): 445-448. doi: 10.11883/1001-1455(2012)04-0445-04 |
[18] | ZHANG Kai, ZHANG Lu-qing. Accumulatingenergyeffectofairflow underflyingplateafteradiabaticcompression[J]. Explosion And Shock Waves, 2011, 31(4): 444-448. doi: 10.11883/1001-1455(2011)04-0444-05 |
[19] | JIN Ri-ya, HU Shuang-qi, BO Tao, ZHANG Ying-hao, YUAN Hong-su. Relation between explosion pressure and volume fraction of ClO2 gas[J]. Explosion And Shock Waves, 2009, 29(3): 333-336. doi: 10.11883/1001-1455(2009)03-0333-04 |
[20] | ZHANG Rui, CHEN Guang-ming. Experimental study of the explosion limits of a new refrigerant to R502[J]. Explosion And Shock Waves, 2005, 25(2): 189-192. doi: 10.11883/1001-1455(2005)02-0189-04 |