Volume 36 Issue 3
Oct.  2018
Turn off MathJax
Article Contents
Zheng Chun, Chen Zhihua, Zhang Huanhao, Sun Xiaohui. Numerical investigations on propagating characteristics of shock waves in different triangle wedges[J]. Explosion And Shock Waves, 2016, 36(3): 379-385. doi: 10.11883/1001-1455(2016)03-0379-07
Citation: Zheng Chun, Chen Zhihua, Zhang Huanhao, Sun Xiaohui. Numerical investigations on propagating characteristics of shock waves in different triangle wedges[J]. Explosion And Shock Waves, 2016, 36(3): 379-385. doi: 10.11883/1001-1455(2016)03-0379-07

Numerical investigations on propagating characteristics of shock waves in different triangle wedges

doi: 10.11883/1001-1455(2016)03-0379-07
  • Received Date: 2014-10-24
  • Rev Recd Date: 2015-01-22
  • Publish Date: 2016-05-25
  • The reflection and focusing of the shock wave propagating into a convergent tube can create a high-temperature and high-pressure region, which is significant for the detonation engine to induce the mixed combustible gases to detonate in ignition. Based on the N-S equations and combined with the five order WENO scheme, the phenomena of the shock wave reflection and focusing in the triangular wedge have been numerically simulated with the Mach number as 6. The numerical results reveal that the modification of the vertex angles has an obvious influence on the kind of shock reflection and the shock wave focusing. With the vertex angle getting bigger, the shock wave transforms from the Mach reflection to the transitional-Mach and the double-Mach reflections, and the jetting on the ramp surface becomes more evident. The high-temperature and high-pressure region generated after the first collision of the triple points can then satisfy the ignition condition of the mixed combustible gases. The temperature and the pressure will rise with the vertex angle getting bigger, and approach the maximum as the shock wave reaches the critical point of the double-Mach reflection on the wedge. However, the shock wave turns to the regular reflection on the wedge when the vertex angle exceeds the angle of the critical double-Mach reflection, and the triple points will not collide. Therefore, no high-temperature and high-pressure region is generated under this condition.
  • loading
  • [1]
    Sha S, Chen Z, Jiang X. Influences of obstacle geometries on shock wave attenuation[J]. Shock Waves, 2014, 24(6):573-582. doi: 10.1007/s00193-014-0520-9
    [2]
    沙莎, 陈志华, 姜孝海.激波与障碍物作用加速衰减的数值研究[J].工程力学, 2014, 31(9):239-244. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201409033

    Sha Sha, Chen Zhihua, Jiang Xiaohai. Investigations into the accelerating attenuation of shock waves by obstacles[J]. Engineering Mechanics, 2014, 31(9):239-244. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201409033
    [3]
    Zhang H, Chen Z, Sun X, et al. Numerical investigations on the thrust augmentation mechanisms of ejectors driven by pulse detonation engines[J]. Combustion Science and Technology, 2011, 183(10):1069-1082. doi: 10.1080/00102202.2011.582054
    [4]
    Chan C K. Collision of a shock wave with obstacles in a combustible mixture[J]. Combustion and Flame, 1995, 100(1/2):341-348. http://www.sciencedirect.com/science/article/pii/001021809400139J
    [5]
    Gelfand B E, Khomik S V, Bartenev A M, et al. Detonation and deflagration initiation at the focusing of shock waves in combustible gaseous mixture[J]. Shock Waves, 2000, 10(3):197-204. doi: 10.1007-s001930050007/
    [6]
    Bartenev A M, Khomik S V, Gelfand B E, et al. Effect of reflection type on detonation initiation at shock-wave focusing[J]. Shock Waves, 2000, 10(3):205-215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84898e087c6ed59c8a3738c81c405019
    [7]
    Setchell R E, Storm E, Sturtevant B. An investigation of shock strengthening in a conical convergent channel[J]. Journal of Fluid Mechanis, 1972, 56(3):505-522. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112072002484
    [8]
    Li H, Ben-Dor G. A shock dynamics theory based analytical solution of double Mach reflections[J]. Shock Waves, 1995, 5(4):259-264. doi: 10.1007/BF01419007
    [9]
    Li H, Ben-Dor G. Analysis of double-Mach-reflection wave configurations with convexly curved Mach stems[J]. Shock Waves, 1999, 9(5):319-326. doi: 10.1007/s001930050192
    [10]
    Li H, Ben-Dor G. Reconsideration of pseudo-steady shock wave reflections and the transition criteria between them[J]. Shock Waves, 1995, 5(1):59-73. doi: 10.1007-BF02425036/
    [11]
    Ben-Dor G, Vasilev E I, Henderson L F, et al. The wall-jetting effect in Mach reflection: A numerical investigation[C]//Proceedings of the 24th International Symposium on Shock Waves. Beijing, China, 2004: 461-466.
    [12]
    高云亮, 李进平, 胡宗民, 等.准定常强激波马赫反射波形的数值研究[J].空气动力学报, 2008, 26(4):456-461. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb200804008

    Gao Yunliang, Li Jinping, Hu Zongmin, et al. A numerical investigation on the Mach reflection patterns of quasi-steady strong shock waves[J]. Acta Aerodynamica Sinica, 2008, 26(4):456-461. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb200804008
    [13]
    高云亮, 姜宗林.准定常强激波反射马赫杆突出变形准则的探讨[J].爆炸与冲击, 2009, 29(2):143-148. doi: 10.3321/j.issn:1001-1455.2009.02.006

    Gao Yunliang, Jiang Zonglin. On transition criterion of Mach stem deformation for Mach reflections of pseudosteady strong shock waves[J]. Explosion and Shock Waves, 2009, 29(2):143-148. doi: 10.3321/j.issn:1001-1455.2009.02.006
    [14]
    孙晓晖, 陈志华, 张焕好.激波绕射碰撞加速诱导爆轰的数值模拟[J].爆炸与冲击, 2011, 31(4):407-412; doi: 10.11883/1001-1455(2011)04-0407-06

    Sun Xiaohui, Chen Zhihua, Zhang Huanhao. Numerical investigations on detonation initiation accelerated by collision of diffracted shock waves[J]. Explosion and Shock Waves, 2011, 31(4):407-412. doi: 10.11883/1001-1455(2011)04-0407-06
    [15]
    孙晓晖, 陈志华, 张焕好, 等.激波绕射双方块加速诱导爆轰的数值研究[J].推进技术, 2011, 32(2):287-291. http://d.old.wanfangdata.com.cn/Periodical/tjjs201102024

    Sun Xiaohui, Chen Zhihua, Zhang Huanhao, et al. Numerical investigations on detonation induced by diffracted shock waves of double square obstacles[J]. Journal of Propulsion Technology, 2011, 32(2):287-291. http://d.old.wanfangdata.com.cn/Periodical/tjjs201102024
    [16]
    王春, 司徒明, 韩肇元.用于爆震引燃的激波聚焦无反应流场数值模拟[J].推进技术, 2003, 24(2):156-159. doi: 10.3321/j.issn:1001-4055.2003.02.016

    Wang Chun, Situ Ming, Han Zhaoyuan. Numerical investigations on cold flowfields of shock focusing for ignition of pulse detonation[J]. Journal of Propulsion Technology, 2003, 24(2):156-159. doi: 10.3321/j.issn:1001-4055.2003.02.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (4350) PDF downloads(386) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return