Citation: | Liu Jingbo, Han Pengfei, Zheng Wenkai, Lu Xinzheng, Lin Li. Numerical investigation of shield building for nuclear power plant subjected to commercial aircraft impact[J]. Explosion And Shock Waves, 2016, 36(3): 391-399. doi: 10.11883/1001-1455(2016)03-0391-09 |
[1] |
Riera J D. A critical reappraisal of nuclear power plant safety against accidental aircraft impact[J]. Nuclear Engineering and Design, 1980, 57(1):193-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/016224398100600403
|
[2] |
Henkel F O, Wölfel H. Building concept against airplane crash[J]. Nuclear Engineering and Design, 1984, 79(3):397-409. doi: 10.1016/0029-5493(84)90052-9
|
[3] |
汤搏.关于核电厂防大型商用飞机撞击的要求-核电发展面临的新挑战[J].核安全, 2010(3):1-12. doi: 10.3969/j.issn.1672-5360.2010.03.001
Tang Bo. Discussion on the impact of large commercial airplane to nuclear power plant[J]. Nuclear Safety, 2010(3):1-12. doi: 10.3969/j.issn.1672-5360.2010.03.001
|
[4] |
Luther W, Müller W C. FDS simulation of the fuel fireball from a hypothetical commercial airliner crash on a generic nuclear power plant[J]. Nuclear Engineering and Design, 2009, 239(10):2056-2069. doi: 10.1016/j.nucengdes.2009.04.018
|
[5] |
Riera J D. On the stress analysis of structures subjected to aircraft impact forces[J]. Nuclear Engineering and Design, 1968, 8(4):415-426. doi: 10.1016/0029-5493(68)90039-3
|
[6] |
Hornyik K. Analytic modeling of the impact of soft missiles on protective walls[C]//Proceedings of the 4th International Conference on Structural Mechanics in Reactor Technology. San Francisco, USA, 1977: 1-12.
|
[7] |
Bahar L Y, Rice J S. Simplified derivation of the reaction-time history in aircraft impact on a nuclear power plant[J]. Nuclear Engineering and Design, 1978, 49(3):263-268. doi: 10.1016/0029-5493(78)90150-4
|
[8] |
Sugano T, Tsubota H, Kasai Y, et al. Full-scale aircraft impact test for evaluation of impact force[J]. Nuclear Engineering and Design, 1993, 140(3):373-385. doi: 10.1016/0029-5493(93)90119-T
|
[9] |
Bangash M Y H. Shock, impact and explosion structural analysis and design[M]. Berlin: Springer Press, 2009.
|
[10] |
Nachtsheim W, Stangenberg F. Selected results of Meppen slab tests-state of interpretation, comparison with computational investigations[C]//Proceedings of the 7th International Conference on Structural Mechanics in Reactor Technology. Chicago, USA, 1983: 379-386.
|
[11] |
Rüdiger E, Riech H. Experimental and theoretical investigations on the impact of deformable missiles onto reinforced concrete slabs[C]//Proceedings of the 7th International Conference on Structural Mechanics in Reactor Technology. Chicago, USA, 1983: 387-394.
|
[12] |
Herrmann N, Kreuser K, Stempniewski L. An experimental approach to determine load-functions for the impact of fluid-filled projectiles[C]//Proceedings of the 76th Shock and Vibration Symposium. Destin, Florida, USA, 2005.
|
[13] |
Lastunen A, Hakola I, Järvinen E, et al. Impact test facility[C]//Proceedings of the 19th International Conference on Structural Mechanics in Reactor Technology. Toronto, Canada, 2007: 1-8.
|
[14] |
Mizuno J, Koshika N, Morikawa H, et al. Investigation on impact resistance of steel plate reinforced concrete barriers against aircraft impact part1: test program and results[C]//Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology. Beijing, 2005: 2566-2579.
|
[15] |
Riedel W, Nöldgena M, Straβburger E, et al. Local damage to ultra high performance concrete structures caused by an impact of aircraft engine missiles[J]. Nuclear Engineering and Design, 2010, 240(10):2633-2642. doi: 10.1016/j.nucengdes.2010.07.036
|
[16] |
Sugano T, Tsubota H, Kasai Y, et al. Local damage to reinforced concrete structures caused by impact of aircraft engine missiles Part 1: Test program, method and results[J]. Nuclear Engineering and Design, 1993, 140 (3):387-405. doi: 10.1016/0029-5493(93)90120-X
|
[17] |
Sugano T, Tsubota H, Kasai Y, et al. Local damage to reinforced concrete structures caused by impact of aircraft engine missiles Part 2: Evaluation of test results[J]. Nuclear Engineering and Design, 1993, 140(3):407-423. doi: 10.1016/0029-5493(93)90121-O
|
[18] |
Martina O, Centrob V, Schwoertzigb T. Finite element analysis on the Meppen-Ⅱ-4 Slab Test[J]. Nuclear Engineering and Design, 2012, 247:1-10. doi: 10.1016/j.nucengdes.2012.02.001
|
[19] |
Martina O, Centrob V, Schwoertzigb T. Finite element analysis on the VTT-IRSN flexural failure test[J]. Nuclear Engineering and Design, 2012, 252:1-10. doi: 10.1016/j.nucengdes.2012.07.004
|
[20] |
Iqbal M A, Rai S, Sadique M R, et al. Numerical simulation of aircraft crash on nuclear containment structure[J]. Nuclear Engineering and Design, 2012, 243:321-335. doi: 10.1016/j.nucengdes.2011.11.019
|
[21] |
Sadique M R, Iqbal M A, Bhargava P. Nuclear containment structure subjected to commercial and fighter aircraft crash[J]. Nuclear Engineering and Design, 2013, 260:30-46. doi: 10.1016/j.nucengdes.2013.03.009
|
[22] |
Lee K, Han S E, Hong J W. Analysis of impact of large commercial aircraft on a prestressed containment building[J]. Nuclear Engineering and Design, 2013, 265:431-449. doi: 10.1016/j.nucengdes.2013.09.009
|
[23] |
Jones N. Structural Impact[M]. UK: Cambridge University Press, 1989:385-400.
|
[24] |
王天运, 任辉启, 张力军, 等.常规装药侵彻预应力钢筋混凝土安全壳数值模拟[J].工程力学, 2005, 22(5):126-130. doi: 10.3969/j.issn.1000-4750.2005.05.023
Wang Tianyun, Ren Huiqi, Zhang Lijun, et al. Numerical simulation of general bomb penetration into pre-stress reinforced concrete containment[J]. Engineering Mechanics, 2005, 22(5):126-130. doi: 10.3969/j.issn.1000-4750.2005.05.023
|
[25] |
王雷, 李玉龙, 索涛, 等.航空常用铝合金动态拉伸力学性能探究[J].航空材料学报, 2013, 33(4):71-77. http://d.old.wanfangdata.com.cn/Periodical/hkclxb201304013
Wang Lei, Li Yulong, Suo Tao, et al. Mechanical behavior of commonly used aeronautical aluminum alloys under dynamic tension[J]. Journal of Aeronautical Materials, 2013, 33(4):71-77. http://d.old.wanfangdata.com.cn/Periodical/hkclxb201304013
|
[26] |
Malvar L J, Ross C A. Review of strain rate effects for concrete in tension[J]. ACI Materials Journal, 1998, 96(5):735-739. http://cn.bing.com/academic/profile?id=97209aeec680a4179187bf18b762a71e&encoded=0&v=paper_preview&mkt=zh-cn
|
[27] |
Prabhakar G, Ranjan R, Mini K P, et al. Analysis of aircraft impact on containment structure[C]//Proceedings of the 5th Asia-Pacific Conference on Shock & Impact Loads on Structures. Changsha, China, 2003: 315-322.
|
[28] |
刘晶波, 郑文凯.大型商用飞机撞击核电站屏蔽厂房荷载研究[J].振动与冲击, 2014, 33(6):97-112. http://d.old.wanfangdata.com.cn/Periodical/zdycj201406018
Liu Jingbo, Zheng Wenkai. Impact load analysis on a nuclear power plant impacted by a large commercial aircraft[J]. Journal of Vibration and Shock, 2014, 33(6):97-112. http://d.old.wanfangdata.com.cn/Periodical/zdycj201406018
|
[29] |
中华人民共和国住房和城乡建设部.混凝土结构设计规范GB 50010-2010[S].北京: 中华人民共和国住房和城乡建设部, 2010.
|
[1] | ZHENG Chun, HE Yong, ZHANG Huanhao, CHEN Zhihua. On the evolution mechanism of the shock-accelerated annular SF6 cylinder[J]. Explosion And Shock Waves, 2023, 43(1): 013201. doi: 10.11883/bzycj-2022-0226 |
[2] | CAI Yunxiong, JIANG Xinsheng, WANG Shimao, YU Binbin, WANG Zituo, WANG Chunhui, LI Yuxi. Experimental study of gasoline-air mixture explosion in imitated vertical dome oil tank[J]. Explosion And Shock Waves, 2022, 42(10): 105401. doi: 10.11883/bzycj-2022-0012 |
[3] | ZHANG Yanwei, XU Jingde, HU Yang, TIAN Siyu, FENG Ruochen, QIN Hansheng. Experimental study on incentive effect of flexible obstacle on methane-air explosion wave[J]. Explosion And Shock Waves, 2021, 41(5): 055402. doi: 10.11883/bzycj-2020-0144 |
[4] | LIU Hai, LI Yi, LI Junling, MA Zhaoxia, CHEN Hong. Simulations of shock initiation of CL-20/HMX co-crystal[J]. Explosion And Shock Waves, 2020, 40(3): 032102. doi: 10.11883/bzycj-2019-0011 |
[5] | JIA Leiming, TIAN Zhou. On the theoretical calculation method for interaction between the vertical plane shock wave and the horizontal thermal layer[J]. Explosion And Shock Waves, 2019, 39(12): 122202. doi: 10.11883/bzycj-2018-0510 |
[6] | ZHU Yuejin, YU Lei, PAN Jianfeng, PAN Zhenhua, ZHANG Penggang. Simulation on jet formation induced by interaction of shock wave with SF6 bubble[J]. Explosion And Shock Waves, 2018, 38(1): 50-59. doi: 10.11883/bzycj-2016-0135 |
[7] | LIN Zhenya, GUO Zeqing, ZHANG Huanhao, CHEN Zhihua, LIU Ying. Numerical simulation of influence of different initial magnetic fields on process of shock wave shocking R22 heavy gas column[J]. Explosion And Shock Waves, 2018, 38(2): 409-418. doi: 10.11883/bzycj-2016-0256 |
[8] | Lin Zhenya, Zhang Huanhao, Chen Zhihua, Liu Ying. Influence of magnetic field on interaction of shock wave with R22 heavy gas column[J]. Explosion And Shock Waves, 2017, 37(4): 748-758. doi: 10.11883/1001-1455(2017)04-0748-11 |
[9] | Zhu Yuejin, Yu Lei, Zhang Penggang, Pan Zhenhua, Pan Jianfeng, Dong Gang. Conditions for shock wave induced flame instability and detonation[J]. Explosion And Shock Waves, 2017, 37(4): 741-747. doi: 10.11883/1001-1455(2017)04-0741-07 |
[10] | Wang Chao, Wu Yu, Shi Honghui, Xiao Yi. Breakup process of a droplet under the impact of a shock wave[J]. Explosion And Shock Waves, 2016, 36(1): 129-134. doi: 10.11883/1001-1455(2016)01-0129-06 |
[11] | Zheng Chun, Chen Zhihua, Zhang Huanhao, Sun Xiaohui. Numerical investigations on propagating characteristics of shock waves in different triangle wedges[J]. Explosion And Shock Waves, 2016, 36(3): 379-385. doi: 10.11883/1001-1455(2016)03-0379-07 |
[12] | Zhu Yue-jin, Dong Gang. A study of vorticity characteristics of shock-flame interaction[J]. Explosion And Shock Waves, 2015, 35(6): 839-845. doi: 10.11883/1001-1455(2015)06-0839-07 |
[13] | Guo Pan, Wu Wen-hua, Liu Jun, Wu Zhi-gang. Numerical simulation of fluid-structure interaction in defect-contained charge of solid rocket motor subjected to shock waves[J]. Explosion And Shock Waves, 2014, 34(1): 93-98. |
[14] | Jiang Yao-gang, Ma Hong-hao, Shen Zhao-wu, Cheng Yang-fan, Fan Zhi-qiang, Wang Quan. Influences of shock wave in cold shock wave extinguishing system on fire extinguishing effect and surrounding environment[J]. Explosion And Shock Waves, 2013, 33(1): 67-72. doi: 10.11883/1001-1455(2013)01-0067-06 |
[15] | Zhu Yue-jin, Dong Gang, Liu Yi-xin, Fan Bao-chun, Jiang Hua. A numerical study on shock induced distortion, mixing and combustion of flame[J]. Explosion And Shock Waves, 2013, 33(4): 430-437. doi: 10.11883/1001-1455(2013)04-0430-08 |
[16] | LIU Jin-hong, ZOU Li-yong, BAI Jing-song, TAN Duo-wang, HUANG Wen-bin, GUO Wen-can. Richtmyer-Meshkovinstabilityofshock-acceleratedair/SF6interfaces[J]. Explosion And Shock Waves, 2011, 31(2): 135-140. doi: 10.11883/1001-1455(2011)02-0135-06 |
[17] | OU-YANG Liang-chen, MA Dong-jun, SUN De-jun, YIN Xie-yuan. High-amplitude single-mode perturbation evolution of Richtmyer-Meshkov instability[J]. Explosion And Shock Waves, 2008, 28(5): 407-414. doi: 10.11883/1001-1455(2008)05-0407-08 |
[18] | TENG Hong-hui, Lv Jun-ming, JIANG Zong-lin. Downstream detonation initiation induced by interaction between shock wave and obstacle in combustible gas mixtures[J]. Explosion And Shock Waves, 2007, 27(3): 251-258. doi: 10.11883/1001-1455(2007)03-0251-08 |
[19] | GUI Ming-yue, FAN Bao-chun, YU Lu-jun, JIANG Xiao-hai, DONG Gang. Numerical investigations on interaction of implosion flame with shock[J]. Explosion And Shock Waves, 2007, 27(3): 204-209. doi: 10.11883/1001-1455(2007)03-0204-06 |
[20] | LIN Ying-song, ZHU Tian-yu, JANG Jin-bao, YUAN Xin-fang, LI De-cong, DING Yan-sheng. Numerical simulation analysis of effect on the cement sample by blast wave in the water[J]. Explosion And Shock Waves, 2006, 26(5): 462-467. doi: 10.11883/1001-1455(2006)05-0462-06 |