Citation: | Yu Yuying, Tan Ye, Tan Hua, Dai Chengda, Peng Jianxiang, Li Xuemei, Wu Qiang, Wang Xiang. A shock-reload wave technique for dynamic strength study of materials at high pressure by self-consistent method[J]. Explosion And Shock Waves, 2016, 36(4): 491-496. doi: 10.11883/1001-1455(2016)04-0491-06 |
[1] |
Fowles G R. Shock wave compression of hardened and annealed 2024 aluminum[J]. Journal of Applied Physics, 1961, 32(8):1475-1487. doi: 10.1063/1.1728382
|
[2] |
Clifton R J, Klopp R W. Pressure-shear plate impact testing[M]//Metals Handbook: Mechanical Testing. OH: American Society for Metals, 1985:230-239.
|
[3] |
Rosenberg Z, Partom Y, Yaziv D. The use of in-material stress gauges for estimating the dynamic yield strength of shock-loaded solids[J]. Journal of Applied Physics, 1984, 56(1):143-146. doi: 10.1063/1.333737
|
[4] |
Asay J R, Chhabildas L C. Determination of the shear strength of shock compressed 6061-T6 aluminum[C]//Meyers M M, Murr L E. Shock Waves and High-strain-rate Phenomena in Metals: Concepts and Application. New York: Plenum Publishing Corp., 1981: 417-431.
|
[5] |
Asay J R, Chhabildas L C, Kerley G I, et al. High pressure strength of shocked aluminum[M]//Gupta Y M. Shock Waves in Condensed Matter. New York: Plenum Press, 1986: 145-149.
|
[6] |
Morris C E, Fritz J N, Holian B L. Quasi-elastic high pressure waves in 2024 Al and copper[C]//Nellis W J. Shock Waves in Condensed Matter. AIP, 1982: 382-386.
|
[7] |
Huang H, AsayJ R. Compressive strength measurements in aluminum for shock compression of the stress range of 4-22 GPa[J]. Journal of Applied Physics, 2005, 98(3):033524. doi: 10.1063/1.2001729
|
[8] |
Huang H, Asay J R.Reshock and release response of aluminum single crystal[J]. Journal of Applied Physics, 2007, 101(6):063550. doi: 10.1063/1.2655571
|
[9] |
胡建波, 戴诚达, 俞宇颖, 等.双屈服面法测量金属材料动高压屈服强度的若干改进[J].爆炸与冲击, 2006, 26(6):516-521. doi: 10.3321/j.issn:1001-1455.2006.06.007
Hu Jianbo, Dai Chengdai, Yu Yuying, et al. Some improvements of the self-consistent method for measuring the dynamic yield strength of ductile metals[J]. Explosion and Shock Waves, 2006, 26(6):516-521. doi: 10.3321/j.issn:1001-1455.2006.06.007
|
[10] |
胡建波, 谭华, 俞宇颖, 等.铝的动态屈服强度测量及再加载弹性前驱波的形成机理分析[J].物理学报, 2008, 57(1):405- 410. doi: 10.3321/j.issn:1000-3290.2008.01.063
Hu Jianbo, Tan Hua, Yu Yuying, et al. Measurements of dynamic yield strength of aluminum alloy and mechanism analysis of elastic precursor during reloading[J]. Acta Physica Sinica, 2008, 57(1):405- 410. doi: 10.3321/j.issn:1000-3290.2008.01.063
|
[11] |
Chhabildas L C, Hills C R. Dynamic shock studies of vanadium[C]//Murr L E. Metallurgical Applications of Shock-wave and High-strain-rate Phenomena. New York: Marcel Dekker, 1985: 429-448.
|
[12] |
Asay J R, Chhabildas L C, Danderkar D P. Shear strength of shock-loaded polycrystalline tungsten[J]. Journal of Applied Physics, 1980, 51(9):4774-4783. doi: 10.1063/1.328309
|
[13] |
华劲松.高温高压下钨合金的本构方程研究[D].北京: 中国工程物理研究院北京研究生部, 1999: 1-118.
|
[14] |
张江跃, 谭华, 虞吉林.双屈服法测定93W合金的屈服强度[J].高压物理学报, 1997, 11(4):254-259. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL704.003.htm
Zhang Jiangyue, Tan Hua, Yu Jilin. Determination of the yield strength of 93W alloys by using AC techniques[J]. Chinese Journal of High Pressure Physics, 1997, 11(4):254-259. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL704.003.htm
|
[15] |
Chhabildas L C, Barker L M, Asay J R, et al. Relationship of fragment size to normalized spall strength for materials[J]. International Journal of Impact Engineering, 1990, 10(1):107-124. doi: 10.1016-0734-743X(90)90052-W/
|
[16] |
Chhabildas L C, Wise J L, Asay J R. Reshock and release behavior of beryllium[C]//Nellis W J. Shock Waves in Condensed Matter. AIP, 1982: 422-426.
|
[17] |
Duffy T S, Ahrens T J. Dynamic compression of an Fe-Cr-Ni alloy to 80 GPa[J]. Journal of Applied Physics, 1997, 82(9):4259-4269. doi: 10.1063/1.366233
|
[18] |
Furnish M D, Alexander C S, Brown J L, et al. 2169 steel waveform measurements for equation of state and strength determination[J]. Journal of Applied Physics, 2014, 115(3):033511. doi: 10.1063/1.4862277
|
[19] |
Vogler T J, Reinhart W D, Chhabildas L C. Dynamic behavior of boron carbide[J]. Journal of Applied Physics, 2004, 95(8):4173-4183. doi: 10.1063/1.1686902
|
[20] |
Vogler T J, Reinhart W D, Chhabildas L C, et al. Hugoniot and strength behavior of silicon carbide[J]. Journal of Applied Physics, 2006, 99(2):023512. doi: 10.1063/1.2159084
|
[21] |
俞宇颖, 习锋, 戴诚达, 等.动高压加载下锆基金属玻璃强度测量[J].爆炸与冲击, 2014, 34(1):1-5. doi: 10.3969/j.issn.1001-1455.2014.01.001
Yu Yuying, Xi Feng, Dai Chengdai, et al. Measurement of strength in a Zr-based bulk metallic glass under dynamic high-pressure loading[J]. Explosion and Shock Waves, 2014, 34(1):1-5. doi: 10.3969/j.issn.1001-1455.2014.01.001
|
[22] |
Yuan F P, Tsai L, Prakash V, et al. Dynamic shear strength of S2 glass fiber reinforced polymer composites under shock compression[J]. Journal of Applied Physics, 2008, 103(10), 103537. doi: 10.1063/1.2930995
|
[23] |
王翔.金属材料状态方程精密实验测量技术研究[D].北京: 中国工程物理研究院北京研究生部, 2004: 1-94.
|
[24] |
Mitchell A C, Nellis W J. Shock compression of aluminum, copper and tantalum[J]. Journal of Applied Physics, 1981, 52(5):3363-3374. doi: 10.1063/1.329160
|
[25] |
Weng Jidong, Tan Hua, Wang Xiang, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution[J]. Appled Physics Letters, 2006, 89(11):111101. doi: 10.1063/1.2335948
|
[26] |
俞宇颖, 习锋, 戴诚达, 等.冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为[J].物理学报, 2012, 61(19):382-387. http://d.old.wanfangdata.com.cn/Periodical/wlxb201219056
Yu Yuying, Xi Feng, Dai Chengda, et al. Plastic behavior of Zr51Ti5Ni10Cu25Al9 metallic glass under planar shock loading[J]. Acta Physica Sinica, 2012, 61(19):382-387. http://d.old.wanfangdata.com.cn/Periodical/wlxb201219056
|
[27] |
谭华.实验冲击波物理导引[M].北京:国防工业出版社, 2007:163-167.
|
[28] |
Yu Yuying, Tan Hua, Hu Jianbo, et al. Determination of effective shear modulus of shock-compressed LY12 Al from particle velocity profile measurements[J]. Journal of Applied Physics, 2008, 103(10):103529. doi: 10.1063/1.2927492
|
[29] |
Hu Jianbo, Zhou Xianming, Dai Chengda, et al. Shock-induced bct-bcc transition and melting of tin identified by sound velocity measurements[J]. Journal of Applied Physics, 2008, 104(8):083520. doi: 10.1063/1.3003325
|