Citation: | Zhang Menghua, Wang Pengxin, Yu Yonggang, Ruan Wenjun, Wang Jian, Ning Huijun. Numerical simulation of the delay time of impact initiated projectile[J]. Explosion And Shock Waves, 2016, 36(5): 728-733. doi: 10.11883/1001-1455(2016)05-0728-06 |
[1] |
张德良, 罗忠文, 俞善炳, 等.穿爆弹撞靶效应数值分析[J].兵工学报, 1997, 18(2):102-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700179225
Zhang Deliang, Luo Zhongwen, Yu Shanbin, et al. Numerical analyses of the effects of impact of a penetrating projectile on the target[J]. Acta Armamentarii, 1997, 18(2):102-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700179225
|
[2] |
纪冲, 龙源, 方向.基于FEM-SPH耦合法的弹丸侵彻钢纤维混凝土数值模拟[J].振动与冲击, 2010, 29(7):69-74. doi: 10.3969/j.issn.1000-3835.2010.07.015
Ji Chong, Long Yuan, Fang Xiang. Numerical simulation for projectile penetrating steel fiber reinforced concrete with FEM-SPH coupling algorithm[J]. Journal of Vibration and Shock, 2010, 29(7):69-74. doi: 10.3969/j.issn.1000-3835.2010.07.015
|
[3] |
Century Dynamics Inc. Interactive non-linear dynamic analysis software AUTODYNTM user manual. Revision 3.0[CP]. USA: Century Dynamics Inc, 1997.
|
[4] |
乐莉, 闫军, 钟秋海.超高速撞击仿真算法分析[J].系统仿真学报, 2004, 16(9):1941-1943. doi: 10.3969/j.issn.1004-731X.2004.09.025
Yue Li, Yan Jun, Zhong Qiuhai. Simulations of debris impacts using three different algorithms[J]. Journal of System Simulation, 2004, 16(9):1941-1943. doi: 10.3969/j.issn.1004-731X.2004.09.025
|
[5] |
王吉, 王肖钧, 卞梁.光滑粒子法与有限元的耦合算法及其在冲击动力学中的应用[J].爆炸与冲击, 2007, 27(6):522-528. doi: 10.3321/j.issn:1001-1455.2007.06.007
Wang Ji, Wang Xiaojun, Bian Liang. Linking of smoothed particle hydrodynamics method to standard finite element method and its application in impact dynamics[J]. Explosion and Shock Waves, 2007, 27(6):522-528. doi: 10.3321/j.issn:1001-1455.2007.06.007
|
[6] |
Attaway S W, Heinstein M W, Swegle J W. Coupling of Smooth particle hydrodynamic with finite element method[J]. Nuclear Engineering and Design, 1994, 150(2/3):199-205. doi: 10.1016-0029-5493(94)90136-8/
|
[7] |
De Vuyst T, Vignjevic R, Campbell J C. Coupling between meshless and finite element methods[J]. International Journal of Impact Engineering, 2005, 31(8):1054-1064. doi: 10.1016/j.ijimpeng.2004.04.017
|
[8] |
Xiao Y H, Han X, Hu D A. A coupling algorithm of finite element method and smoothed particle hydrodynamics for impact computations[J]. Computers, Materials & Continua, 2011, 23(1):9-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a07c4b8549c5a92ea69f8ba69e561219
|
[9] |
肖毅华, 胡德安, 韩旭, 等.一种自适应轴对称FEM-SPH耦合算法及其在高速冲击模拟中的应用[J].爆炸与冲击, 2012, 32(4):384-392. doi: 10.3969/j.issn.1001-1455.2012.04.007
Xiao Yihua, Hu Dean, Han Xu, et al. An adaptive axisymmetric FEM-SPH coupling algorithm and its application to high velocity impact simulation[J]. Explosive and Shock Waves, 2012, 32(4):384-392. doi: 10.3969/j.issn.1001-1455.2012.04.007
|
[10] |
宋太阳.冲击起爆弹丸对薄板侵彻过程研究[J].弹道学报, 1999, 11(4):54-69. http://www.cnki.com.cn/Article/CJFDTOTAL-DDXB199904012.htm
Song Taiyang. Theinvestigation on penetration process of projectile initiated by impact onto thin-sheet[J]. Journal of Ballistics, 1999, 11(4):54-69. http://www.cnki.com.cn/Article/CJFDTOTAL-DDXB199904012.htm
|
[1] | KANG Haobo, JIANG Jianwei, PENG Jiacheng, LI Mei. Simulation analysis on the initiation mechanism of the explosive charge covered with a thick shell impacted by a rod projectile[J]. Explosion And Shock Waves, 2022, 42(1): 013303. doi: 10.11883/bzycj-2021-0111 |
[2] | WU Junying, LI Yaojiang, YANG Lijun, LIU Jiaxi, WU Jiaojiao, ZHANG Xiaozhou, CHEN Lang. Shock initiation characteristics of four-component HTPB solid propellant containing RDX[J]. Explosion And Shock Waves, 2021, 41(8): 082301. doi: 10.11883/bzycj-2020-0350 |
[3] | PANG Songlin, CHEN Xiong, XU Jinsheng, WANG Yongping. Impact initiation of a solid-rocket engine by a shaped-charge jet[J]. Explosion And Shock Waves, 2020, 40(8): 082101. doi: 10.11883/bzycj-2019-0469 |
[4] | GUO Chun, GUO Shangsheng, QIAN Jianping, GU Wenbin. Numerical simulation on shock critical initiation velocity of cylindrical covered charge by multiple fragment impacts[J]. Explosion And Shock Waves, 2020, 40(6): 062301. doi: 10.11883/bzycj-2019-0391 |
[5] | WANG Xin, JIANG Jianwei, WANG Shuyou, MEN Jianbing. Critical detonation velocity calculation model of cylindrical covered charge impacted by fragment[J]. Explosion And Shock Waves, 2019, 39(1): 012302. doi: 10.11883/bzycj-2017-0271 |
[6] | BAI Zhiling, DUAN Zhuoping, WEN Lijing, ZHANG Zhenyu, OU Zhuocheng, HUANG Fenglei. A multi-component Duan-Zhang-Kim mesoscopic reaction rate model for shock initiation of multi-component PBX explosives[J]. Explosion And Shock Waves, 2019, 39(11): 112101. doi: 10.11883/bzycj-2018-0410 |
[7] | LIU Haiqing, DUAN Zhuoping, BAI Zhiling, WEN Lijing, OU Zhuocheng, HUANG Fenglei. Experimental research on effects of porosity on shock initiation of PBX explosive[J]. Explosion And Shock Waves, 2019, 39(7): 072302. doi: 10.11883/bzycj-2018-0226 |
[8] | ZHANG Tao, LIU Yusheng, GAO Zhipeng, YANG Jia, LIU Yi, GU Yan. Numerical simulation of the interlayer effects for fragments impacting steel-covered charge[J]. Explosion And Shock Waves, 2018, 38(6): 1241-1246. doi: 10.11883/bzycj-2017-0154 |
[9] | CHU Wenhua, ZHU Dongjun, LIANG Deli, FENG Feng, WEI Sijun. Dynamic characteristics of three-dimensional complex structure based on coupling algorithm[J]. Explosion And Shock Waves, 2018, 38(4): 725-734. doi: 10.11883/bzycj-2016-0283 |
[10] | Pi Zhengdi, Chen Lang, Liu Danyang, Wu Junying. Shock initiation of CL-20 based explosives[J]. Explosion And Shock Waves, 2017, 37(6): 915-923. doi: 10.11883/1001-1455(2017)06-0915-09 |
[11] | Chen Shao-jie, Wu Li-zhi, Shen Rui-qi, Ye Ying-hua, Hu Yan. Initiation of HNS-Ⅳ using a laser-driven multi-layer flyer[J]. Explosion And Shock Waves, 2015, 35(2): 285-288. doi: 10.11883/1001-1455-(2015)02-0285-04 |
[12] | Jiang Xi-bo, Rao Guo-ning, Xu Sen, Yao Miao, Ma An-peng, Peng Jin-hua. Shock initiation characteristics of expired single-base propellants[J]. Explosion And Shock Waves, 2014, 34(1): 99-105. doi: 10.11883/1001-1455(2014)01-0099-07 |
[13] | Chen Lang, Liu Qun, Wy Jun-ying. On shock initiation of heated explosives[J]. Explosion And Shock Waves, 2013, 33(1): 21-28. doi: 10.11883/1001-1455(2013)01-0021-08 |
[14] | TAO Wei-jun, HUAN Shi, HUANG Feng-lei, JIANG Guo-ping. Lateralrarefactionwaveeffectsonshockinitiation ofheterogeneouscondensedexplosives[J]. Explosion And Shock Waves, 2011, 31(4): 397-401. doi: 10.11883/1001-1455(2011)04-0397-05 |
[15] | ZHANG Zhong, CHEN Wei-dong, YANG Wen-miao. Thematerialpointmethodforshock-to-detonationtransitionof heterogeneoussolidexplosive[J]. Explosion And Shock Waves, 2011, 31(1): 25-30. doi: 10.11883/1001-1455(2011)01-0025-06 |
[16] | LIANG Zeng-you, HUANG Feng-lei, ZHANG Zhen-yu. Study on new reaction rate function model of PBX-9404 for damaged explosive initiation behaviour[J]. Explosion And Shock Waves, 2008, 28(1): 38-41. doi: 1.011883/1001-1455(2008)01-0038-06 |
[17] | WANG Gui-ji, ZHAO Tong-hu, MO Jian-jun, WU Gang, HAN Mei, TAN Fu-li. Short-duration pulse shock initiation characteristics of a TATB/HMX-based polymer bonded explosive[J]. Explosion And Shock Waves, 2007, 27(3): 230-235. doi: 10.11883/1001-1455(2007)03-0230-06 |
[18] | WANG Ji, WANG Xiao-jun, BIAN Liang. Linking of smoothed particle hydrodynamics method to standard finite element method and its application in impact dynamics[J]. Explosion And Shock Waves, 2007, 27(6): 522-528. doi: 10.11883/1001-1455(2007)06-0522-07 |
[19] | PAN Hao, HU Xiao-mian. Numerical simulation for overdriven and shocking-to-detonation transition of insensitive high explosives[J]. Explosion And Shock Waves, 2006, 26(2): 174-178. doi: 10.11883/1001-1455(2006)02-0174-05 |
[20] | LI Zhi-peng, LONG Xin-ping, HUANG Yi-min, HE Bi, WANG Rong, HE Song-wei. Electromagnetic gauge measurements of shock initiating JOB-9003 explosive[J]. Explosion And Shock Waves, 2006, 26(3): 269-272. doi: 10.11883/1001-1455(2006)03-0269-04 |