Xu Shuai, Peng Jian-yu, Li Yuan-hui, An Long, Wu Jin. Blasting parameter optimization of medium-depth hole caving for steeply inclined thin veins[J]. Explosion And Shock Waves, 2015, 35(5): 682-688. doi: 10.11883/1001-1455(2015)05-0682-07
Citation: Ma Bin, Huang Zhengxiang, Zu Xudong, Xiao Qiangqiang, Jia Xin. Influence of longitudinal magnetic field on coefficient ofultimate elongation of shaped charge jet[J]. Explosion And Shock Waves, 2016, 36(6): 759-766. doi: 10.11883/1001-1455(2016)06-0759-08

Influence of longitudinal magnetic field on coefficient ofultimate elongation of shaped charge jet

doi: 10.11883/1001-1455(2016)06-0759-08
  • Received Date: 2015-03-31
  • Rev Recd Date: 2015-06-11
  • Publish Date: 2016-11-25
  • The coefficient of the ultimate elongation is one of significant parameters related with theoretical calculations of a shaped charge jet (SCJ). Based on the effect of a longitudinal magnetic field on the stress-strain of SCJ, and following the motion equation and the plastic instability condition, the formula of the coefficient of the ultimate elongation of a shaped charge inside the magnetic field was obtained and, using this formula, the ratio of the coefficient of the ultimate elongation was calculated respectively with and without the existence of a magnetic field. In addition, the theoretical model was verified through the experiments with two different standoffs. The results indicate that the electromagnetic force arising from the deformation of the SCJ due to the magnetic field that has penetrated into its material inhibits the development of the necking, and extends the stretching stage before the SCJ breaks up into particles, thus increasing the coefficient of the ultimate elongation. Predictions from the theoretical calculation are in good agreement with the data obtained from the experiments.
  • [1]
    Walters W P, Zukas J A. Fundamentals of shaped charges[M]. John Wiley, 1989.
    [2]
    Chou P C, Carleone J. The stability of shaped-charge jets[J]. Journal of Applied Physics, 1977, 48(10):4187-4195. doi: 10.1063/1.323456
    [3]
    Babkin A V, Ladov S V, Marinin V M, et al. Regularities of the stretching and plastic failure of metal shaped-charge jets[J]. Journal of Applied Mechanics and Technical Physics, 1999, 40(4):571-580. doi: 10.1007/BF02468430
    [4]
    Fedorov S V, Babkin A V, Ladov S V, et al. Possibilities of controlling the shaped-charge effect by electromagnetic actions[J]. Combustion, Explosion and Shock Waves, 2000, 36(6):792-808. doi: 10.1023/A:1002867025761
    [5]
    Hirsch E. A model explaining the rule for calculating the break-up time of homogeneous ductile metals[J]. Propellants, Explosives, Pyrotechnics, 1981, 6(1):11-14. doi: 10.1002/(ISSN)1521-4087
    [6]
    Hirsch E. A formula for the shaped charge jet breakup-time[J]. Propellants, Explosives, Pyrotechnics, 1979, 4(5):89-94. doi: 10.1002/(ISSN)1521-4087
    [7]
    Chou P C, Flis W J. Recent developments in shaped charge technology[J]. Propellants, Explosives, Pyrotechnics, 1986, 11(4):99-114. doi: 10.1002/(ISSN)1521-4087
    [8]
    Curtis J P. Axisymmetric instability model for shaped charge jets[J]. Journal of Applied Physics, 1987, 61(11):4978-4985. doi: 10.1063/1.338317
    [9]
    Hennequin E. Modelling of the shaped charge jet break-up[J]. Propellants, Explosives, Pyrotechnics, 1996, 21(4):181-185. doi: 10.1002/(ISSN)1521-4087
    [10]
    Romero L A. The instability of rapidly stretching plastic jets[J]. Journal of Applied Physics, 1989, 65(8):3006-3016. doi: 10.1063/1.342718
    [11]
    Babkin A V, Ladov S V, Marinin V M, et al. Characteristics of inertially stretching shaped-charge jets in free flight[J]. Journal of Applied Mechanics and Technical Physics, 1997, 38(2):171-176. doi: 10.1007/BF02467897
    [12]
    Littlefield D L, Powell J D. The effect of electromagnetic fields on the stability of a uniformly elongating plastic jet[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(2):2240. http://cn.bing.com/academic/profile?id=eb3d9e9f7284e2e08798cb78960bc5ba&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    Fedorov S V, Babkin A V, Ladov S V. Salient features of inertial stretching of a high-gradient conducting rod in a longitudinal low-frequency magnetic field[J]. Journal of Engineering Physics and Thermophysics, 2001, 74(2):364-374. doi: 10.1023/A:1016656522643
    [14]
    Fedorov S V. Magnetic-field amplification in metal shaped-charge jets during their inertial elongation[J]. Combustion, Explosion and Shock Waves, 2005, 41(1):106-113. doi: 10.1007/s10573-005-0012-4
    [15]
    Fedorov S V, Babkin A V, Ladov S V. Influence of the magnetic field produced in the liner of a shaped charge on its penetrability[J]. Combustion, Explosion and Shock Waves, 1999, 35(5):598-599. doi: 10.1007/BF02674508
    [16]
    Tucker T J, Toth R P. EBW1: A computer code for the prediction of the behavior of electrical circuits containing exploding wire elements[R]. Albuquerque, NM, USA: Sandia Labs, 1975.
    [17]
    Singh M, Bola M S, Prakash S. Determination of dynamic tensile strength of metals from jet break-up studies[C]//Proceedings of the 19th International Symposium on Ballistics. Interlaken, Switzerland, 2001: 7-11.
    [18]
    Allison F E, Bryan G M. Cratering by a train of hypervelocity fragments[C]//Proceedings of 2nd Hypervelocity Impact Effects Symposium. 1957: 81.
    [19]
    Walters W P, Summers R L. An analytical model for the particulation of a jet from a shaped charge liner[J]. Propellants, Explosives, Pyrotechnics, 1995, 20(2):58-63. doi: 10.1002/(ISSN)1521-4087
  • Relative Articles

    [1]WANG Mafa, LI Junling, LIU Sen. The influence of density gradient of driving gas on projectile launching velocity[J]. Explosion And Shock Waves, 2023, 43(4): 042202. doi: 10.11883/bzycj-2022-0209
    [2]ZHANG Xuan, YU Yonggang, ZHANG Xinwei. Analysis of muzzle flow field characteristics of gun fired in different media[J]. Explosion And Shock Waves, 2021, 41(10): 103901. doi: 10.11883/bzycj-2021-0056
    [3]ZHANG Jinghui, YU Yonggang. Numerical investigation on the muzzle flow field of an underwater submerged launched ballistic gun at different water depths[J]. Explosion And Shock Waves, 2020, 40(10): 104201. doi: 10.11883/bzycj-2019-0478
    [4]WANG Zhen, WANG Tao, BAI Jingsong, XIAO Jiaxin. Numerical study of non-uniformity effect on Richtmyer-Meshkov instability induced by non-planar shock wave[J]. Explosion And Shock Waves, 2019, 39(4): 041407. doi: 10.11883/bzycj-2018-0342
    [5]Wu Wei, Xu Hou-qian, Wang Liang, Xue Rui. Numerical simulation of a muzzle flow field involving chemical reactions based on gridless method[J]. Explosion And Shock Waves, 2015, 35(5): 625-632. doi: 10.11883/1001-1455(2015)05-0625-08
    [6]Zhao Xiao-long, Ma Tie-hua, Xu Peng, Fan Jin-biao. Acceleration signal test and analysis for projectile penetrating into concrete[J]. Explosion And Shock Waves, 2014, 34(3): 347-353. doi: 10.11883/1001-1455(2014)03-0347-07
    [7]Zhou Guang-yu, Hu Shi-sheng. Pulse-shaping techniques of high-g-value acceleration generators[J]. Explosion And Shock Waves, 2013, 33(5): 479-486. doi: 10.11883/1001-1455(2013)05-0479-08
    [8]LIPing, GAO Shi-qiao, JINLei, SHI Yun-bo. Effectsofpackagematerialsonperformances ofapiezoresistiveMEMSacceleromete[J]. Explosion And Shock Waves, 2012, 32(6): 623-628. doi: 10.11883/1001-1455(2012)06-0623-06
    [9]ZHU Yi-Chao, GAO Cheng, LI Yan-Xin, CHEN Yong-Guang. Design and realization of an acceleration measurement system by using Model 1221[J]. Explosion And Shock Waves, 2010, 30(3): 333-336. doi: 10.11883/1001-1455(2010)03-0333-04
    [10]YUN Lai-feng, RUI Xiao-ting, HOU Ri-sheng, HE Bin. Calculation of launch dynamics with two-phase flow interior ballistic model for self-propelled artillery[J]. Explosion And Shock Waves, 2007, 27(1): 12-17. doi: 10.11883/1001-1455(2007)01-0012-06
    [11]ZHANG Wei, MA Wen-lai, GUAN Gong-shun, PANG Bao-jun. Numerical simulation of non-spherical projectiles hypervelocity impact on spacecraft shield configuration[J]. Explosion And Shock Waves, 2007, 27(3): 240-245. doi: 10.11883/1001-1455(2007)03-0240-06
    [12]WANG Wen-jun, HU Shi-sheng. Calibration of high shock acceleration sensors[J]. Explosion And Shock Waves, 2006, 26(6): 568-571. doi: 10.11883/1001-1455(2006)06-0568-04
    [13]LI Qian, HONG Yan-ji, CAO Zheng-rui. Numerical simulation of thrust generating mechanism for air-breathing laser propulsion[J]. Explosion And Shock Waves, 2006, 26(6): 550-555. doi: 10.11883/1001-1455(2006)06-0550-06
  • Cited by

    Periodical cited type(19)

    1. 李元辉,丁跃跃,孔伟中,李坤蒙,肖贵轩. 急倾斜薄矿脉开采技术现状与“采—选—充”协同开采新模式. 金属矿山. 2025(01): 27-36 .
    2. 林海祥,洪巧,熊泽华,张鑫,林金山. 基于数值模拟的银山矿上向中深孔爆破网格参数优化. 采矿技术. 2024(01): 127-132 .
    3. 张小瑞,贾志伟,安龙. 深部急倾斜薄矿体中深孔爆破夹制力量化分析. 黄金. 2024(08): 52-57 .
    4. 何丽华,赵艳伟,孙进辉,陈浩,孙龙,任骏. 临近胶结充填体矿房爆破参数数值模拟分析. 云南冶金. 2024(04): 30-38 .
    5. 汪杰,袁兵,勒治华,叶光祥,汪光鑫,郭成淋. 深孔采矿法在急倾斜极薄钨矿脉的应用. 中国钨业. 2024(05): 1-7 .
    6. 王瑜,董二虎,张旭飞,孟祥凯. 金属矿中深孔微差爆破起爆延时精准识别与段别优化. 金属矿山. 2023(06): 61-70 .
    7. 张双侠,刘志祥,杨小聪,熊帅,陈祉颖,黄麟淇. 高地应力下扇形孔爆破损伤特性分析及优化设计(英文). Journal of Central South University. 2023(06): 1887-1899 .
    8. 林凌旺. 急倾斜极薄矿脉深孔回采贫化控制研究. 采矿技术. 2023(05): 18-21 .
    9. 杨学武,王煜鑫. 急倾斜薄矿体中深孔爆破试验研究. 采矿技术. 2023(05): 108-111 .
    10. 刘涛,姜培根,乔俊斌,白腾飞,任基. 脉内顺路天井中深孔嗣后充填采矿法在玲珑金矿的应用. 黄金. 2023(12): 10-13 .
    11. 谢国森,罗春梧,宋丽霞,张德全,张煜晖,秦旭忠. 棉花坑矿床破碎矿体深孔连续采矿工艺研究. 铀矿冶. 2022(04): 394-400 .
    12. 周斌. 中深孔爆破技术在极不稳固薄矿脉中的应用. 采矿技术. 2021(05): 140-142+148 .
    13. 姜永恒,雷恒永,杨杰,唐学义,宋士生,叶光祥. 镇沅金矿中深孔爆破参数数值模拟研究. 爆破. 2019(01): 77-83 .
    14. 刘飞,常坤林,李猛. 布孔方式及延期时间对煤体破碎效果影响的数值模拟. 矿业科学学报. 2019(04): 318-326 .
    15. 陈清运,余少平,彭静波,郑祖静,徐正碧,张惠君,黄贞林. 金鼎钨钼矿露天台阶深孔爆破参数优化. 爆破. 2018(01): 75-79+95 .
    16. 李启月,张成君,吴正宇,陈英,韦佳瑞. 受限自由面爆破装药量计算公式的优化研究. 爆破. 2017(01): 37-41+66 .
    17. 杨平,王雪峰. 基于数值模拟技术改善异位孔爆破效果研究. 工程爆破. 2017(05): 27-32 .
    18. 戚伟,曹帅,宋卫东. 中深孔嗣后废石充填采矿法在急倾斜薄矿脉开采中的试验应用. 黄金. 2017(02): 30-33 .
    19. 石晨晨,刘雅楠,黄伟强,李祥龙. 深部采场爆破参数数值模拟设计优化研究. 价值工程. 2017(14): 116-120 .

    Other cited types(8)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (4453) PDF downloads(371) Cited by(27)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return