Citation: | Tan Yang, Chi Yilin, Huang Yayu, Yao Tingqiang. An internal state variable viscoplastic constitutive model considering the evolution of microstructural characteristic length[J]. Explosion And Shock Waves, 2016, 36(6): 869-875. doi: 10.11883/1001-1455(2016)06-0869-07 |
[1] |
Manes A, Serpellini F, Pagani M, et al. Perforation and penetration of aluminium target plates by armour piercing bullets[J]. International Journal of Impact Engineering, 2014, 69(4):39-54. http://www.sciencedirect.com/science/article/pii/S0734743X14000499
|
[2] |
汤铁钢, 刘仓理.高应变率拉伸加载下无氧铜的本构模型[J].爆炸与冲击, 2013, 33(6):581-586. doi: 10.3969/j.issn.1001-1455.2013.06.004
Tang Tiegang, Liu Cangli. On the constitutive model for oxygen-free high-conductivity copper under high strain-rate tension[J]. Explosion and Shock Waves, 2013, 33(6):581-586. doi: 10.3969/j.issn.1001-1455.2013.06.004
|
[3] |
Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5):1816-1825. doi: 10.1063/1.338024
|
[4] |
Huh H, Ahn K, Lim J H, et al. Evaluation of dynamic hardening models for BCC, FCC, and HCP metals at a wide range of strain rates[J]. Journal of Materials Processing Technology, 2014, 214(7):1326-1340. doi: 10.1016/j.jmatprotec.2014.02.004
|
[5] |
Follansbee P S, Kocks U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable[J]. Acta Metallurgica, 1988, 36(1):81-93. doi: 10.1016/0001-6160(88)90030-2
|
[6] |
Banerjee B. The mechanical threshold stress model for various tempers of AISI 4340 steel[J]. International Journal of Solids and Structures, 2007, 44(3/4):834-859. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0510330
|
[7] |
Bammann D J, Chiesa M L, Johnson G C. A state variable damage model for temperature and strain rate dependent metal[C]//Rajendran A M, Batra R C. Constitutive laws: Experiments and numerical implementation. Barcelona: International Center for Numerical Methods in Engineering (CIMNE), 1995: 84-97.
|
[8] |
Tanner A B. Modeling temperature and strain rate history in effects in OFHU Cu[D]. Ann Arbor: Georgia Institute of Technology, 1998. http://www.researchgate.net/publication/252105952_Modeling_temperature_and_strain_rate_history_in_effects_in_OFHU_Cu
|
[9] |
Molinari A, Ravichandran G. Constitutive modeling of high-strain-rate deformation in metals based on the evolution of an effective microstructural length[J]. Mechanics of Materials, 2005, 37(7):737-752. doi: 10.1016/j.mechmat.2004.07.005
|
[10] |
Sevillano J G, van Houtte P, Aernoudt E. Large strain work hardening and textures[J]. Progress in Materials Science, 1980, 25(2):69-412. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211046481/
|
[11] |
Thompson A W. Substructure strengthening mechanisms[J]. Metallurgical Transactions: A, 1977, 8(6):833-842. doi: 10.1007/BF02661564
|
[12] |
Ananthan V S, Leffers T, Hansen N, et al. Cell and band structures in cold rolled polycrystalline copper[J]. Materials Science and Technology, 1991, 7(12):1069-1075. doi: 10.1179/mst.1991.7.12.1069
|
[13] |
Luo Z P, Zhang H W, Hansen N, et al. Quantification of the microstructures of high purity nickel subjected to dynamic plastic deformation[J]. Acta Materialia, 2012, 60(3):1322-1333. doi: 10.1016/j.actamat.2011.11.035
|
[14] |
Staker M R, Holt D L. The dislocation cell size and dislocation density in copper deformed at temperatures between 25 and 700 ℃[J]. Acta Metallurgica, 1972, 20(4):569-579. doi: 10.1016/0001-6160(72)90012-0
|
[15] |
Lee W S, Lin C F, Chen T H, et al. Dynamic mechanical behaviour and dislocation substructure evolution of Inconel 718 over wide temperature range[J]. Materials Science and Engineering: A, 2011, 528(19/20):6279-6286. http://www.sciencedirect.com/science/article/pii/S0921509311005223
|
[16] |
Holt D L. Dislocation cell formation in metals[J]. Journal of Applied Physics, 1970, 41(8):3197-3201. doi: 10.1063/1.1659399
|
[17] |
Huang M, Li Z, Tong J. The influence of dislocation climb on the mechanical behavior of polycrystals and grain size effect at elevated temperature[J]. International Journal of Plasticity, 2014, 61:112-127. doi: 10.1016/j.ijplas.2014.06.002
|
[18] |
Devincre B, Hoc T, Kubin L. Dislocation Mean Free Paths and Strain Hardening of Crystals[J]. Science, 2008, 320(5884):1745-1748. doi: 10.1126/science.1156101
|
[19] |
Kolupaeva S, Semenov M. The stored energy of plastic deformation in crystals of face-centered cubic metals[J]. IOP Conference Series: Materials Science and Engineering, 2015, 71(1):12-77. http://www.researchgate.net/publication/276237736_The_stored_energy_of_plastic_deformation_in_crystals_of_face-_centered_cubic_metals
|
[20] |
Lee W S, Chen T H. Effects of strain rate and temperature on dynamic mechanical behaviour and microstructural evolution in aluminium-scandium (Al-Sc) alloy[J]. Materials Science and Technology, 2008, 24(10):1271-1282. doi: 10.1179/174328408X323078
|
[21] |
谭阳, 迟毅林, 黄亚宇, 等.Bammann-Chiesa-Johnsonn粘塑性本构模型材料参数的一种识别方法[J].计算力学学报, 2015(4):490-495. http://www.cjcm.net/ch/reader/view_abstract.aspx?file_no=20150408&flag=1
Tan Yang, Chi Yilin, Huang Yayu, et al. An approach for identification of material parameters in Bammann-Chiesa-Johnson viscoplastic constitutive model[J]. Chinese Journal of Computational Mechanics, 2015(4):490-495. http://www.cjcm.net/ch/reader/view_abstract.aspx?file_no=20150408&flag=1
|