Citation: | Wang Gongzhong, Zhang Jianhua, Li Dengke, Chen Xianfeng. Large eddy simulation of impacted obstacles' effects on premixed flame's characteristics[J]. Explosion And Shock Waves, 2017, 37(1): 68-76. doi: 10.11883/1001-1455(2017)01-0068-09 |
[1] |
Ciccarelli G, Johansen C, Kellenberger M.High-speed flames and DDT in very rough-walled channels[J].Combustion and Flame, 2013, 160(1):204-211. doi: 10.1016/j.combustflame.2012.08.009
|
[2] |
Chen Xianfeng, Zhang Yin, Zhang Ying.Effect of CH4-Air ratios on gas explosion flame microstructure and propagation behaviors[J].Energies, 2012, 5(10):4132-4146. doi: 10.3390/en5104132
|
[3] |
Sklavounos S, Rigas F.Validation of turbulence models in heavy gas dispersion over obstacles[J].Journal of hazardous materials, 2004, 108(1):9-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9c7b9ce98b1236bf2e9888f9b42111d6
|
[4] |
Arntzen B J.Modelling of turbulence and combustion for simulation of gas explosions in complex geometries[J].Journal of Loss Prevention in the Process Industries, 1998, 18(4/5/6):225-237. http://cn.bing.com/academic/profile?id=bd294e5486d8a62e3f3850d02e580e62&encoded=0&v=paper_preview&mkt=zh-cn
|
[5] |
Sarli V D, Benedetto A D, Long E J, et al.Time-resolved particle image velocimetry of dynamic interactions between hydrogen-enriched methane/air premixed flames and toroidal vortex structures[J].International Journal of Hydrogen Energy, 2012, 37(21):16201-16213. doi: 10.1016/j.ijhydene.2012.08.061
|
[6] |
Masri A R, Ibrahim S S, Cadwallader B J.Measurements and large eddy simulation of propagating premixed flames[J].Experimental Thermal and Fluid Science, 2006, 30(7):687-702. doi: 10.1016/j.expthermflusci.2006.01.008
|
[7] |
Gubba S R, Ibrahim S S, Malalasekera W, et al.Measurements and LES calculations of turbulent premixed flame propagation past repeated obstacles[J].Combustion and Flame, 2011, 158(12):2465-2481. doi: 10.1016/j.combustflame.2011.05.008
|
[8] |
Kessler D A, Gamezo V N, Oran E S.Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air systems[J].Combustion and Flame, 2010, 157(11):2063-2077. doi: 10.1016/j.combustflame.2010.04.011
|
[9] |
Gamezo V N, Ogawa T, Oran E S.Flame acceleration and DDT in channels with obstacles:Effect of obstacle spacing[J].Combustion and Flame, 2008, 155(1/2):302-315. http://www.sciencedirect.com/science/article/pii/S0010218008001934
|
[10] |
Ogawa T, Gamezo V N, Oran E S.Flame acceleration and transition to detonation in an array of square obstacles[J].Journal of Loss Prevention in the Process Industries, 2013, 26(2):355-362. doi: 10.1016/j.jlp.2011.12.009
|
[11] |
任少峰.可燃性气体泄爆动力学机理研究[D].武汉: 武汉理工大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10497-1012442364.htm
|
[12] |
Lesieur M.Large-eddy simulations of turbulence[M].Cambridge:Cambridge University Press, 2005.
|
[13] |
肖华华.管道中氢/空气预混火焰传播动力学实验与数值模拟研究[D].合肥: 中国科学技术大学, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2354259
|
[1] | WANG Yanbing, LI Xue, WANG Zhaoyang, HUANG Zhehang, MEI Hongjia, LI Yangyang, LUO Lin. Rock breaking effect of plasma blasting under confining pressure[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0089 |
[2] | NI Hui. Plasma pressure over time-space evolution law for femtosecond pulses laser shock peening[J]. Explosion And Shock Waves, 2024, 44(2): 023202. doi: 10.11883/bzycj-2023-0262 |
[3] | GUO Rui, LI Nan, ZHANG Xinyan, ZHANG Yansong, XU Chang, ZHANG Gongyan, ZHAO Xing, XIE Yuxuan, HAN Zhelin. Correlation between pressure characteristics and thermochemical kinetics during suppression of micro/nano PMMA dust explosion[J]. Explosion And Shock Waves, 2023, 43(12): 125401. doi: 10.11883/bzycj-2023-0058 |
[4] | FU Rongyao, SUN Yaohong, XU Xuzhe, YAN Ping. Effect of hydrostatic pressure on fracture of rock subjected to plasma impact[J]. Explosion And Shock Waves, 2018, 38(5): 1051-1056. doi: 10.11883/bzycj-2017-0057 |
[5] | Ren Baoxiang, Tao Gang, Zhou Jie, Wang Jian, Wang Baogui. Experimental research on optimizing the flow fieldof pulse gas flow generator[J]. Explosion And Shock Waves, 2016, 36(1): 31-37. doi: 10.11883/1001-1455(2016)01-0031-07 |
[6] | Ni Yanjie, Xing Rongjun, Wan Gang, Jin Yong, Li Haiyuan, Yang Chunxia, Li Baoming. Porous propellant burning rate enhanced by plasma[J]. Explosion And Shock Waves, 2016, 36(4): 562-567. doi: 10.11883/1001-1455(2016)04-0562-06 |
[7] | WU Xian-qian, DUAN Zhu-ping, HUANG Chen-guang, SONG Hong-wei. Acouplingmodelforcomputingplasmapressure inducedbylasershockpeening[J]. Explosion And Shock Waves, 2012, 32(1): 1-7. doi: 10.11883/1001-1455(2012)01-0001-07 |
[8] | TANG En-ling, XIANG Sheng-hai, ZHANG Wei, LI Le-xin, YU Hui, ZHAO Xin-ying. Electromagneticcharacteristicsofexpandingplasmacloud createdbyhypervelocityimpac[J]. Explosion And Shock Waves, 2012, 32(3): 283-290. doi: 10.11883/1001-1455(2012)03-0283-08 |
[9] | TANG En-ling, ZHANG Qing-ming, ZHANG Jian. Electron temperature diagnosis of plasma generated by hypervelocity impact of a LY12 aluminum projectile into a LY12 aluminum target[J]. Explosion And Shock Waves, 2009, 29(3): 323-327. doi: 10.11883/1001-1455(2009)03-0323-05 |
[10] | LIU Jing-jing, LIU Zong-de. Theoretical analysis of the electromagnetically accelerated plasma spraying[J]. Explosion And Shock Waves, 2008, 28(1): 23-27. doi: 10.11883/1001-1455(2008)01-0023-05 |
[11] | WANG Xin-liang, YE Dan, GU Fan. The double fluid model of the non-equilibrium ionization zone in the detonation plasma[J]. Explosion And Shock Waves, 2008, 28(2): 131-137. doi: 10.11883/1001-1455(2008)02-0131-07 |
[12] | WU Jun-ying, CHEN Lang, FENG Chang-gen. Experiments and theoretical calculation of explosive-driven shock wave ferromagnetic generators[J]. Explosion And Shock Waves, 2007, 27(5): 398-404. doi: 10.11883/1001-1455(2007)05-0398-07 |
1. | 时本军,李杰,徐小辉,徐天涵,郭纬,李孝臣,李超,李干. 混凝土中多点聚集爆炸效应起爆参数优化设计. 爆炸与冲击. 2025(01): 153-167 . ![]() | |
2. | 蒲文龙,申罗飞,刘洋. 基于ANSYS/LS-DYNA的防凌减灾微差爆破数值模拟. 黑龙江科技大学学报. 2023(03): 325-332 . ![]() | |
3. | 王莹,秦业志,王志凯,姚熊亮. 不同类型炸药水下爆炸时冰层损伤特性研究. 振动与冲击. 2022(09): 189-198 . ![]() | |
4. | 王燕,李梦群,杨淼慧,徐锦,王佳奇. 复合防护结构抗破片侵彻性能的研究. 火工品. 2022(04): 16-20 . ![]() | |
5. | 吴榕榕,王健,王英霖. 弹体高速侵彻冰体研究. 弹箭与制导学报. 2022(04): 74-80 . ![]() | |
6. | 王英霖,王健,诸庆生. 高速弹体侵彻冰材料过程数值模拟研究. 兵器装备工程学报. 2021(04): 62-67 . ![]() | |
7. | 陈德勇,贺小轩,杨慧,相光友,左祖雄. 瓦斯爆炸冲击波对通风设施破坏情况数值模拟影响因素分析. 安全. 2021(12): 36-42 . ![]() |