Citation: | Yang Shiting, Xing Yongming, Zhao Yanru, Hao Yunhong, Li Jijun, Jiang Aifeng. Deformation field in 316L stainless steel by single shot peening[J]. Explosion And Shock Waves, 2017, 37(1): 126-133. doi: 10.11883/1001-1455(2017)01-0126-08 |
[1] |
Marteau J, Bigerelle M, Mazeran P E, et al. Relation between roughness and processing conditions of AISI 316L stainless steel treated by ultrasonic shot peening[J]. Tribology International, 2015, 82:319-329. doi: 10.1016/j.triboint.2014.07.013
|
[2] |
Ganesh B K C, Sha W, Ramanaiah N, et al. Effect of shotpeening on sliding wear and tensile behavior of titanium implant alloys[J]. Materials and Design, 2014, 56(4):480-486. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d2428b4f6fa62767ff66efd3f8f0b4cd
|
[3] |
Benedetti M, Fontanari V, Santus C, et al. Notch fatigue behavior of shot peened high-strength aluminium alloys: Experiments and predictions using a critical distance method[J]. International Journal of Fatigue, 2010, 32(10):1600-1611. doi: 10.1016/j.ijfatigue.2010.02.012
|
[4] |
栾伟玲, 涂善东.喷丸表面改性技术的研究进展[J].中国机械工程, 2005, 16(15):1405-1049. doi: 10.3321/j.issn:1004-132X.2005.15.023
Luan Weiling, Tu Shandong. Recent trends on surface modification technology of shot peening[J]. China Mechanical Engineering, 2005, 16(15):1405-1049. doi: 10.3321/j.issn:1004-132X.2005.15.023
|
[5] |
Al-Obaid Y F. Shot peening mechanics: experimental and theoretical analysis[J]. Mechanics of Materials, 1995, 19(2/3):251-260. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211961014/
|
[6] |
Menig R, Pintschovius L, Schulze V, et al. Depth profiles of macro residual stresses in thin shot peened steel plates determined by X-ray and neutron diffraction[J]. Scripta Materialia, 2001, 45(8):977-983. doi: 10.1016/S1359-6462(01)01063-6
|
[7] |
Xing Y M, Lu J. An experimental study of residual stress induced by ultrasonic shot peening[J]. Journal of Materials Processing Technology, 2004, 152(1):56-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f4518f2da0effa1755be7dca1bc56be4
|
[8] |
张洪伟, 张以都, 吴琼.喷丸强化过程及冲击效应的数值模拟[J].金属学报, 2010, 46(1):111-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000302556
Zhang Hongwei, Zhang Yidu, Wu Qiong. Numerical simulations of shot-peening process and impact effect[J]. Acta Metallurgica Sinica, 2010, 46(1):111-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000302556
|
[9] |
Taehyung K, Hyungyil L, Hong C H, et al. Effects of Rayleigh damping, friction and rate-dependency on 3D residual stress simulation of angled shot peening[J]. Materials and Design, 2013, 46(4):26-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1ab77b975ca1cdf02a33903920abb275
|
[10] |
Taehyung K, Hyungyil L, Minsoo K, et al. A 3D FE model for evaluation of peening residual stress under angled multi-shot impacts[J]. Surface & Coatings Technology, 2012, 206(19/20):3981-3988. http://www.sciencedirect.com/science/article/pii/S0257897212002599
|
[11] |
Sheng X F, Xia Q X, Cheng X Q, et al. Residual stress field induced by shot peening based on random-shots for 7075 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22:261-267. doi: 10.1016/S1003-6326(12)61717-8
|
[12] |
Mylonas G I, Labeas G. Numerical modeling of shot peening process and corresponding produces: Residual stress, surface roughness and cold work prediction[J]. Surface & Coatings Technology, 2011, 205(19):4480-4494. http://www.sciencedirect.com/science/article/pii/S0257897211002696
|
[13] |
Watanabe M, Kishimoto S, Xing Y M, et al. Evaluation of strain field around impacted particles by applying electron Moiré method[J]. Journal of Thermal Spray Technology, 2007, 16(5):940-946. doi: 10.1007/s11666-007-9129-1
|
[14] |
Schiffner K, Helling C D. Simulation of residual stresses by shot peening[J]. Computers & Structures, 1999, 72(1/2/3):329-340. http://www.sciencedirect.com/science/article/pii/S0045794999000127
|
[15] |
Meguid S A, Shagal G, Stranart J C, et al. Three-dimensional dynamic finite element analysis of shot-peening induced residual stresses[J]. Finite Elements in Analysis and Design, 1999, 31(3):179-191. doi: 10.1016/S0168-874X(98)00057-2
|
[16] |
Meo M, Vignjevic R. Finite element analysis of residual stress induced by shot peening process[J]. Advances in Engineering Software, 2003, 34(03):569-575. doi: 10.1016-j.clon.2010.02.005/
|
[17] |
Umbrello D, Saoubi R M, Outeiro J C. The influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steel[J]. International Journal of Machine Tools & Manufacture, 2007, 47(3/4):462-470. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=da2b63f7ce1c3f04be8bf54f29588b1e
|
[18] |
Wang J M, Liu F H, Yu F, et al. Shot peening simulation based on SPH method[J]. The International Journal of Advanced Manufacturing Technology, 2011, 56(5/6/7/8):571-578. http://d.old.wanfangdata.com.cn/Periodical/sdgydxxb201006013
|
[1] | WANG Fei, HAN Jin, CHEN Jinshe, CHEN Haiyan, ZHANG Yansong, YANG Yang, ZHANG Yang, ZHU Yuzhen. Preparation of NiP@Fe-SBA-15 suppressant and its inhibition mechanism on PP dust deflagration flames[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0434 |
[2] | CAI Chongchong, SU Yang, WANG Yan. Research progress on the deflagration characteristics and explosion suppression of hydrogen-rich methane[J]. Explosion And Shock Waves, 2024, 44(7): 071101. doi: 10.11883/bzycj-2023-0330 |
[3] | JI Wentao, GUO Xiaoxiao, CHEN Zhitao, CAI Chongchong, WANG Yan. Suppression characteristics and mechanism of polyethylene dust explosion by Mg-Al hydrotalcite[J]. Explosion And Shock Waves, 2024, 44(4): 045401. doi: 10.11883/bzycj-2023-0263 |
[4] | HU Lishuang, LIU Yang, YANG Yajun, ZHU He, LIANG Kaili, HU Shuangqi. Inhibition effect of water mist on RDX dust explosion[J]. Explosion And Shock Waves, 2024, 44(5): 055401. doi: 10.11883/bzycj-2023-0346 |
[5] | GUO Rui, LI Nan, ZHANG Xinyan, ZHANG Yansong, XU Chang, ZHANG Gongyan, ZHAO Xing, XIE Yuxuan, HAN Zhelin. Correlation between pressure characteristics and thermochemical kinetics during suppression of micro/nano PMMA dust explosion[J]. Explosion And Shock Waves, 2023, 43(12): 125401. doi: 10.11883/bzycj-2023-0058 |
[6] | CHENG Fangming, NAN Fan, XIAO Yang, LUO Zhenmin, NIU Qiaoxia. Experimental study on the suppression of methane-air explosion by CF3I and CO2[J]. Explosion And Shock Waves, 2022, 42(6): 065402. doi: 10.11883/bzycj-2021-0386 |
[7] | WU Linyuan, YU Lifu, WANG Tianshu, SUN Wei, XU Jianhang, LI Hang. Explosion characteristics of oil shale dust in a confined space[J]. Explosion And Shock Waves, 2022, 42(1): 015401. doi: 10.11883/bzycj-2021-0139 |
[8] | XIE Jibiao, ZHANG Jiaqi, DING Ce, WANG Xiaoli. Coupling relationship between flame velocity and overpressure of butane explosion inhibited by synergistic effect of nanohydrophobic SiO2[J]. Explosion And Shock Waves, 2021, 41(9): 095402. doi: 10.11883/bzycj-2021-0016 |
[9] | KONG Xiangshao, WANG Zitang, KUANG Zheng, ZHOU Hu, ZHENG Cheng, WU Weiguo. Experimental study on the mitigation effects of confined-blast loading[J]. Explosion And Shock Waves, 2021, 41(6): 062901. doi: 10.11883/bzycj-2020-0193 |
[10] | JIA Hailin, XIANG Haijun, LI Dihui, ZHAI Rupeng. Suppression of explosion in pipelines with different blocking ratios by ultrafine water mist containing sodium chloride[J]. Explosion And Shock Waves, 2020, 40(4): 042201. doi: 10.11883/bzycj-2019-0268 |
[11] | LI Xiaobin, ZHANG Ruijie, CUI Liwei, ZHANG Qingli. Coupling analysis of explosion pressure and free radical change during methane explosion inhibited by urea[J]. Explosion And Shock Waves, 2020, 40(3): 032101. doi: 10.11883/bzycj-2019-0090 |
[12] | ZHENG Ligang, LI Gang, WANG Yalei, ZHU Xiaochao, Dou Zengguo, DU Depeng, YU Minggao. Effect of blockage ratios on the characteristics of methane/air explosions suppressed by dry chemicals[J]. Explosion And Shock Waves, 2019, 39(11): 115403. doi: 10.11883/bzycj-2018-0228 |
[13] | ZHAO Qi, CHEN Xianfeng, DAI Huaming, YIN Shuhui, WANG Xiaotong, ZHANG Hongming, HUANG Chuyuan. Inhibition of explosion characteristic of premixed gases by filling patterns of rare earth metal materials[J]. Explosion And Shock Waves, 2019, 39(11): 115404. doi: 10.11883/bzycj-2018-0276 |
[14] | HUANG Chuyuan, CHEN Xianfeng, ZHANG Hongming, TANG Wenwen, CHEN Xi, ZHANG Wenbo, LIU Xuanya. Experimental investigation on suppression of starch flame by ultrafine silicon dioxide powders[J]. Explosion And Shock Waves, 2018, 38(2): 324-330. doi: 10.11883/bzycj-2016-0235 |
[15] | Zhang Yingxin, Wu Qiang, Liu Chuanhai, Jiang Bingyou, Zhang Baoyong. Experimental study on coal mine gas explosion suppression with inert gas N2/CO2[J]. Explosion And Shock Waves, 2017, 37(5): 906-912. doi: 10.11883/1001-1455(2017)05-0906-07 |
[16] | Yu Minggao, Yang Yong, Pei Bei, Niu Pan, Zhu Xinna. Experimental study of methane explosion suppression by nitrogen twin-fluid water mist[J]. Explosion And Shock Waves, 2017, 37(2): 194-200. doi: 10.11883/1001-1455(2017)02-0194-07 |
[17] | Li Ying, Ren Guangwei, Zhang Wei, Zhao Pengduo, Zhang Lei, Du Zhipeng. Water mitigation effect under internal blast[J]. Explosion And Shock Waves, 2017, 37(6): 1080-1086. doi: 10.11883/1001-1455(2017)06-1080-07 |
[18] | Zhang Peili, Du Yang. Experiments of nitrogen non-premixed suppression of gasoline-air mixture explosion[J]. Explosion And Shock Waves, 2016, 36(3): 347-352. doi: 10.11883/1001-1455(2016)03-0347-06 |
[19] | Yu Jian-liang, Yan Xing-qing. Suppression of flame speed and explosion overpressure by aluminum silicate wool[J]. Explosion And Shock Waves, 2013, 33(4): 363-368. doi: 10.11883/1001-1455(2013)04-0363-06 |
[20] | XIE Li-feng, LI Bin, SHEN Zheng-xiang, LONG Yin. Experiment on combustion and detonation characteristics and its suppression for liquid vapor[J]. Explosion And Shock Waves, 2009, 29(6): 659-664. doi: 10.11883/1001-1455(2009)06-0659-06 |
1. | 李珩,马国锐,刘宇迪,张海明. 基于遥感影像的大当量爆炸建筑物毁伤评估模型. 爆炸与冲击. 2024(03): 80-89 . ![]() | |
2. | 秦帅,刘浩,陈力,张磊. 融合先验知识的混凝土侵彻深度试验数据异常点检测算法. 爆炸与冲击. 2024(03): 70-79 . ![]() | |
3. | 马天宝,龙俊文,刘玥. 基于BP神经网络的水中双爆源爆炸冲击波峰值压力预测模型研究. 北京理工大学学报. 2024(03): 260-269 . ![]() | |
4. | 韩小祥,李君,张欣,原林,刘洋,王博宇. 核爆炸光辐射能量分布的模拟仿真研究. 强激光与粒子束. 2024(07): 119-130 . ![]() |