Citation: | Chen Xiao, Dong Gang, Jiang Hua, Wu Jintao. Numerical studies of sinusoidally premixed flame interface instability induced by multiple shock waves[J]. Explosion And Shock Waves, 2017, 37(2): 229-236. doi: 10.11883/1001-1455(2017)02-0229-08 |
[1] |
Marble F E, Sonneborn G, Pun C S J, et al. Physic conditions in circumstellar gas surrounding SN 1987A 12 years after outburst[J]. The Astrophysical Journal, 2000, 545:390-398. doi: 10.1086/apj.2000.545.issue-1
|
[2] |
Oran E S, Gamezo V N. Origins of the deflagration-to-detonation transition in gas-phrase combustion[J]. Combustion Flame, 2007, 148(1-2):4-47. doi: 10.1016/j.combustflame.2006.07.010
|
[3] |
Yang J, Kubota T, Zukoski E E. Applications of shock-induced mixing to supersonic combustion[J]. AIAA Journal, 1993, 31(5):854-862. doi: 10.2514/3.11696
|
[4] |
Markstein G H. A shock-tube study of flame front-pressure wave interaction[C]//6th Symposium (International) on Combustion. Pittsburgh, USA: The Combustion Institute, 1957: 387-398.
|
[5] |
Ton V T, Karagozian A R, Marble F F, et al. Numerical simulations of high speed chemically reactive flow[J]. Theoretical and Computational Fluid Dynamics, 1994, 6:161-179. doi: 10.1007/BF00312347
|
[6] |
Ju Y, Shimano A, Inoue O. Vorticity generation and flame distortion induced by shock flame interaction[C]//27th Symposium (International) on Combustion. Pittsburgh. USA: The Combustion Institute, 1998: 735-741.
|
[7] |
朱跃进, 董刚, 刘怡昕, 等.激波诱导火焰变形、混合和燃烧的数值研究[J].爆炸与冲击, 2013, 33(4):430-437. doi: 10.3969/j.issn.1001-1455.2013.04.016
Zhu Yuejin, Dong Gang, Liu Yixin, et al. A numerical study on shock induced distortion, mixing and combustion of flame[J]. Explosion and Shock Waves, 2013, 33(4):430-437. doi: 10.3969/j.issn.1001-1455.2013.04.016
|
[8] |
Zhu Yuejin, Dong Gang, Liu Yixin, et al. Three-dimensional numerical simulations of spherical flame evolutions in shock reshock accelerate flows[J]. Combustion Science and Technology, 2013, 185(10):1415-1440. doi: 10.1080/00102202.2013.798656
|
[9] |
Khokhlov A M, Oran E S, Chtchelkanova A Y. Interaction of a shock with a sinusoidally perturbed flame[J]. Combustion and Flame, 1999, 117:99-116. doi: 10.1016/S0010-2180(98)00090-X
|
[10] |
Kilchyk V, Nalim R, Merkle C. Laminar premixed flame fuel consumption rate modulation by shocks and expansion waves[J]. Combustion and Flame, 2011, 158:1140-1148. doi: 10.1016/j.combustflame.2010.10.026
|
[11] |
Massa L, Jha P. Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions[J]. Physics of Fluids, 2012, 24:056101. doi: 10.1063/1.4719153
|
[12] |
Leinov E, Malamud G, Elbaz Y, et al. Experimental and numerical investigation of the Richtmyer-Meshkov instability under re-shock conditions[J]. Fluid Mechanics, 2009, 626:449-475. doi: 10.1017/S0022112009005904
|
[13] |
Ukai S, Balakrishnan K, Menon S. Growth rate predictions of single- multi-mode Richtmyer-Meshkov instability with reshock[J]. Shock Wave, 2011, 21:533-546. doi: 10.1007/s00193-011-0332-0
|
[14] |
Balsara D S, Shu C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J]. Journal of Computational Physics, 2000, 160:405-452. doi: 10.1006/jcph.2000.6443
|
[15] |
Thomas G O, Bambrey R, Brown C. Experimental observations of flame acceleration and transition to detonation following shock-flame interaction[J]. Combustion Theory and Modelling, 2001, 5(4):573-594. doi: 10.1088/1364-7830/5/4/304
|
[16] |
蒋华, 董刚, 陈霄, 小扰动界面形态对RM不稳定性影响的数值分析[J].力学学报, 2014, 46(4):544-552. doi: 10.7638/kqdlxxb-2013.0008
Jiang Hua, Dong Gang, Chen Xiao. Numerrical study on the effects of small amplitude initial perturbations on RM instability[J]. Chinese Jounal of Theoretical and Applied Mechanics, 2014, 46(4):544-552. doi: 10.7638/kqdlxxb-2013.0008
|
[17] |
Latini M, Schilling O, Don W S. Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability[J]. Journal of Computational Physics, 2007, 221:805-836. doi: 10.1016/j.jcp.2006.06.051
|