Citation: | Li Ruiyu, Sun Yuxin, Zhou Ling, Sun Qiran, Zhao Yayun, Feng Jiangtuo. Influence of heat transfer on long-rod projectiles penetrating into ceramic targets[J]. Explosion And Shock Waves, 2017, 37(2): 332-338. doi: 10.11883/1001-1455(2017)02-0332-07 |
[1] |
李永池, 袁福平, 胡秀章, 等.卵形头部弹丸对混凝土靶板侵彻的二维数值模拟[J].弹道学报, 2002, 14(1):14-19. doi: 10.3969/j.issn.1004-499X.2002.01.003
Li Yongchi, Yuan Fuping, Hu Xiuzhang, et al.The 2-D numerical simulation on penetrations of an oval headed projectile into concrete targets[J].Journal of Ballistics, 2002, 14(1):14-19. doi: 10.3969/j.issn.1004-499X.2002.01.003
|
[2] |
晏麓晖, 冯兴民, 夏清波, 等.应变率和绝热软化对空腔膨胀影响的数值模拟[J].国防科技大学学报, 2011, 33(3):44-47. doi: 10.3969/j.issn.1001-2486.2011.03.010
Yan Luhui, Feng Xingmin, Xia Qingbo, et al.A numerical simulation of the effects of strain rate and adiabatic softening on the Cavity Expansion Model[J].Journal of National University of Defense Technology, 2011, 33(3):44-47. doi: 10.3969/j.issn.1001-2486.2011.03.010
|
[3] |
赵攀峰, 沈兆武, 孙宇新.含损伤热塑性材料靶板的抗冲塞研究[C]//第十届全国激波与激波管学术讨论会论文集, 2002: 141-146. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200210001025.htm
|
[4] |
Ning Jianguo, Ren Huilan, Guo Tingting, et al.Dynamic response of alumina ceramics impacted by long tungsten projectile[J].International Journal of Impact Engineering, 2013, 62:60-74. doi: 10.1016/j.ijimpeng.2013.06.006
|
[5] |
Lidén E, Mousavi S, Helte A, et al.Deformation and fracture of a long-rod projectile induced by an oblique moving plate:Numerical simulations[J].International Journal of Impact Engineering, 2012, 40/41:35-45. doi: 10.1016/j.ijimpeng.2011.09.003
|
[6] |
Iqbal M A, Gupta G, Diwakar A, et al.Effect of projectile nose shape on the ballistic resistance of ductile targets[J].European Journal of Mechanics-A/Solids, 2010, 29(4):683-694. doi: 10.1016/j.euromechsol.2010.02.002
|
[7] |
孙宇新, 李永池, 于少娟, 等.长杆弹侵彻受约束A95陶瓷靶的实验研究[J].弹道学报, 2005, 17(2):38-41. doi: 10.3969/j.issn.1004-499X.2005.02.008
Sun Yuxin, Li Yongchi, Yu Shaojuan, et al.An experimental study on the penetration confined A95 ceramic targets[J].Journal of Ballistics, 2005, 17(2):38-41. doi: 10.3969/j.issn.1004-499X.2005.02.008
|
[8] |
孙宇新, 张进, 李永池, 等.内爆加载下热塑性管壳的应力波演化与层裂效应研究[J].高压物理学报, 2005, 19(4):319-324. doi: 10.3969/j.issn.1000-5773.2005.04.006
Sun Yuxin, Zhang Jin, Li Yongchi, et al.Propagation of stress wave and spallation of cylindrical tube under external explosive Loading[J].Chinese Journal of High Pressure Physics, 2005, 19(4):319-324. doi: 10.3969/j.issn.1000-5773.2005.04.006
|
[9] |
李硕, 王志军, 徐永杰, 等.热处理对弹体材料侵彻能力影响的分析[J].兵工学报, 2014, 35(S2):78-82. http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO2014S2015.htm
Li Shuo, Wang Zhijun, Xu Yongjie, et al.The effect of heat treatment on penetration performance of projectile material[J].Acta Armamentarii, 2014, 35(S2):78-82. http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO2014S2015.htm
|
[10] |
赵晓宁, 何勇, 张先锋, 等.A3钢抗高速杆弹侵彻的数值模拟与实验研究[J].南京理工大学学报, 2011, 35(2):164-167. doi: 10.3969/j.issn.1005-9830.2011.02.003
Zhao Xiaoning, He Yong, Zhang Xianfeng, et al.Experimental and numerical study on A3 steel targets penetrated by high-velocity long-rod projectiles[J].Journal of Nanjing University of Science&Technology, 2011, 35(2):164-167. doi: 10.3969/j.issn.1005-9830.2011.02.003
|
[11] |
卞梁, 王肖钧, 章杰.SPH/FEM耦合算法在陶瓷复合靶抗侵彻数值模拟中的应用[J].高压物理学报, 2010, 24(3):161-167. doi: 10.3969/j.issn.1000-5773.2010.03.001
Bian Liang, Wang Xiaojun, Zhang Jie.Numerical simulations of antipenetration of confined ceramic targets by SPH/FEM coupling method[J].Chinese Journal of High Pressure Physics, 2010, 24(3):161-167. doi: 10.3969/j.issn.1000-5773.2010.03.001
|
[12] |
杨震琦, 庞宝君, 王立闻, 等.JH-2模型及其在Al2O3陶瓷低速撞击数值模拟中的应用[J].爆炸与冲击, 2010, 30(5):463-471. http://www.bzycj.cn/CN/abstract/abstract8776.shtml
Yang Zhenqi, Pang Baojun, Wang Liwen, et al.JH-2 model and its application to numerical simulation on Al2O3 ceramic under low-velocity impact[J].Explosion and Shock Waves, 2010, 30(5):463-471. http://www.bzycj.cn/CN/abstract/abstract8776.shtml
|
[13] |
任会兰, 陈雯, 郭婷婷.陶瓷靶抗侵彻特性的数值模拟研究[J].北京理工大学学报(自然科学版), 2013, 33(2):111-115. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb201302001
Ren Huilan, Chen Wen, Guo Tingting.Numerical simulation on the anti-penetration properties of ceramic target[J].Transactions of Beijing Institute o Technology (Natural Science Edition), 2013, 33(2):111-115. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb201302001
|
[1] | LI Manjiang, ZHAO Zhihao, DONG Xinlong, FU Yingqian, YU Xinlu, ZHOU Gangyi. Deformation and phase transformation of 20 steel cylinders driven by inner explosion[J]. Explosion And Shock Waves, 2023, 43(1): 013105. doi: 10.11883/bzycj-2022-0074 |
[2] | LI Yinglei, LIU Mingtao, CHEN Yan, ZHANG Shiwen, TANG Tiegang. Technologies for loading and diagnosis of expanding cylinder experiments with linearly-initiated explosives[J]. Explosion And Shock Waves, 2022, 42(12): 124101. doi: 10.11883/bzycj-2021-0484 |
[3] | ZHANG Shiwen, JIN Shan, CHEN Yan, GUO Zhaoliang, DAN Jiakun, LIU Mingtao, TANG Tiegang. Influence of a cushion on dynamic expansion and fracture of an explosively-driven metallic cylinder[J]. Explosion And Shock Waves, 2022, 42(8): 083102. doi: 10.11883/bzycj-2021-0456 |
[4] | WANG Xiaodong, YU Yilei, JIANG Zhaoxiu, MA Minghui, GAO Guangfa. Dynamic fragmentation and failure of the hard core of a 12.7 mm API projectile against SiC/6061T6Al composite armor with various impact velocities[J]. Explosion And Shock Waves, 2022, 42(2): 023303. doi: 10.11883/bzycj-2021-0181 |
[5] | YANG Chen, LIU Mingtao, TANG Tiegang, GUO Zhaoliang, FAN Cheng. Expansion fracture mode of 7075 aluminum ring under electromagnetic loading[J]. Explosion And Shock Waves, 2021, 41(3): 032201. doi: 10.11883/bzycj-2021-0005 |
[6] | LIU Zhiyong, WANG Jintao, HE Bin, LUO Yongfeng, WANG Fei. Study on the formation mechanism of uranium aerosol under explosion load[J]. Explosion And Shock Waves, 2021, 41(5): 052201. doi: 10.11883/bzycj-2021-0075 |
[7] | LUO Yusong, LI Weibing, CHEN Zhichuang, WANG Xiaoming, LI Wenbin. A freezing recovery method for metallic cylinder shells under internal explosive loading[J]. Explosion And Shock Waves, 2020, 40(10): 104101. doi: 10.11883/bzycj-2020-0041 |
[8] | LI Yanchao, BI Mingshu, ZHANG Dawei, GAO Wei. Effects of diffusive-thermal instability and hydrodynamic instability on cellular flame during hydrogen/air explosion[J]. Explosion And Shock Waves, 2018, 38(5): 1064-1070. doi: 10.11883/bzycj-2017-0069 |
[9] | Guo Zhaoliang, Fan Cheng, Liu Mingtao, Ren Guowu, Tang Tiegang, Liu Cangli. Fracture mode transition in expanding ring and cylindrical shell under electromagnetic and explosive loadings[J]. Explosion And Shock Waves, 2017, 37(6): 1072-1079. doi: 10.11883/1001-1455(2017)06-1072-08 |
[10] | Ren Guowu, Wen Shangjie, Zhang Ru, Guo Zhaoliang, Tang Tiegang. Numerical simulation of influence of constrained layer on expanding deformation of metal cylindrical shell[J]. Explosion And Shock Waves, 2017, 37(6): 946-951. doi: 10.11883/1001-1455(2017)06-0946-06 |
[11] | Jin Shan, Liu Xin, Yuan Shuai, Hua Jin-song, Tang Tie-gang. Method for calculating small difference of fracture time of cylinder shell unloaded by detonation[J]. Explosion And Shock Waves, 2015, 35(1): 130-134. doi: 10.11883/1001-1455(2015)01-0130-05 |
[12] | Zhang Zhi-biao, Huang Feng-lei. The number of circumferential fragments of a cylindrical shell subjected to internal explosive loading[J]. Explosion And Shock Waves, 2015, 35(5): 763-767. doi: 10.11883/1001-1455(2015)05-0763-05 |
[13] | Ren Guo-wu, Guo Zhao-liang, Zhang Shi-wen, Tang Tie-gang, Jin Shan, Hu Hai-bo. Experiment and numerical simulation on expansion deformation and fracture of cylindrical shell[J]. Explosion And Shock Waves, 2015, 35(6): 895-900. doi: 10.11883/1001-1455(2015)06-0895-06 |
[14] | Liu Ming-tao, Tang Tie-gang, Hu Hai-bo, Li Qing-zhong, Hu Xiu-zhang, Li Yong-chi. Numerical studies of explosion induced cylindrical shell fractureunder different detonating modes[J]. Explosion And Shock Waves, 2014, 34(4): 415-420. doi: 10.11883/1001-1455(2014)04-0415-06 |
[15] | Ye Xiang-ping, Li Ying-lei, Zhang Zu-gen. Mechanism of expanding fracture of 45 steel cylinder shells driven by modified SHPB[J]. Explosion And Shock Waves, 2014, 34(3): 322-327. doi: 10.11883/1001-1455(2014)03-0322-06 |
[16] | JIN Shan, TANG Tie-gang, SUN Xue-lin, LI Qing-zhong. Dynamic characteristics of 45 steel cylinder shell by different heat treatment conditions[J]. Explosion And Shock Waves, 2006, 26(5): 423-428. doi: 10.11883/1001-1455(2006)05-0423-06 |
[17] | TANG Tie-gang, LI Qing-zhong, SUN Xue-lin, SUN Zhan-feng, JIN Shan, GU Yan. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation[J]. Explosion And Shock Waves, 2006, 26(2): 129-133. doi: 10.11883/1001-1455(2006)02-0129-05 |
[18] | CHEN Gang, CHEN Zhong-fu, TAO Jun-lin, NIU Wei, ZHANG Qing-ping, HUANG Xi-cheng. Investigation and validation on plastic constitutive parameters of 45 steel[J]. Explosion And Shock Waves, 2005, 25(5): 451-456. doi: 10.11883/1001-1455(2005)05-0451-06 |
1. | 昝文涛,洪滔,董贺飞. 铝粉尘云团爆轰温压效应的数值模拟. 兵工学报. 2018(01): 101-110 . ![]() | |
2. | 昝文涛,洪滔,董贺飞. 带管道连接的空间中悬浮铝粉尘爆轰波传播数值模拟. 含能材料. 2017(06): 508-514 . ![]() | |
3. | 陆松,谢延松. 浅谈粉尘与化学高毒物品危害企业职业卫生现状调查及分析. 中国卫生产业. 2017(14): 26-27 . ![]() |