Wu Yanqing, Bao Xiaowei, Wang Mingyang, Huang Fenglei, Zhang Zhu. Ignition and burning mechanisms of RDX/HMX particlessubjected to drop-weight impact[J]. Explosion And Shock Waves, 2017, 37(2): 339-346. doi: 10.11883/1001-1455(2017)02-0339-08
Citation: Wu Yanqing, Bao Xiaowei, Wang Mingyang, Huang Fenglei, Zhang Zhu. Ignition and burning mechanisms of RDX/HMX particlessubjected to drop-weight impact[J]. Explosion And Shock Waves, 2017, 37(2): 339-346. doi: 10.11883/1001-1455(2017)02-0339-08

Ignition and burning mechanisms of RDX/HMX particlessubjected to drop-weight impact

doi: 10.11883/1001-1455(2017)02-0339-08
  • Received Date: 2015-09-10
  • Rev Recd Date: 2016-01-21
  • Publish Date: 2017-03-25
  • The mechanical and chemical response of explosives under low velocity impact is the basis for the evaluation of their sensitivity. The drop-weight impact apparatus equipped with the optical photography was used to achieve a frequency of 150 thousand seconds of real time observation. It was capable of distinguishing the samples of "Go" or "no Go" and observing such characteristics of deformation, crushing and breakage, jetting, ignition and combustion evolution, of RDX and HMX particles under low velocity impact. The selected photographic frames show that ignition occurred in the partially melted RDX phase. But for the HMX particles, ignition mainly occurred in the solid phase. A violent jetting phenomenon often occurs before the reaction of combustion. The occurrence of jetting primarily results from the energy released by gaseous products, which push the pulverized or melted explosives splash. The response characteristics of single and multiple granular explosives were compared. Because of the interaction of the hot spots broken, the combustion reaction of the particles is more intense than that of the single particles. The size ratio of the image to the actual length can be used to estimate combustion wave propagation velocity in each case, which is very suitable for characterizing the intensity of the macro-combustion reaction.
  • [1]
    Balzer J E, Proud W G, Walley S M.et al.High-speed photographic study of the drop-weight impact response of RDX-DOS mixtures[J].Combustion and Flame, 2003, 135(4):547-555. doi: 10.1016/j.combustflame.2003.08.009
    [2]
    Buntain G A, Mckinney T, Rivera T, et al.Decomposition of energetic materials on the drop-weight-impact machine[C]//Proceedings of the 9th Symposium (International) on Detonation.Portland, Oregon, United States, 1989: 1037-1043.
    [3]
    Rice B M, Hare J J.A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules[J].Journal of Physical Chemistry A, 2002, 106(9):1770-1783. doi: 10.1021/jp012602q
    [4]
    Keshavarz M, Jaafari M.Investigation of the various structure parameters for predicting impact sensitivity of energetic molecules via artificial neural network[J].Propellants, Explosives, Pyrotechnics, 2006, 31(3):216-225. doi: 10.1002/(ISSN)1521-4087
    [5]
    Swallowe G M, Field J E.The ignition of a thin layer of explosive by impact:The effect of polymer particles[J].Proceedings of the Royal Society of London A:Mathematical and Physical Sciences, 1982, 379(1777):389-408. doi: 10.1098/rspa.1982.0022
    [6]
    Swallowe G M, Field J E, Hutchinson C D.Impact experiments on thin layers of polymers and intermediate explosives[C]//Gupta Y M.Proceedings of the Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter.New York: Plenum Press, 1985: 891-898. doi: 10.1007/978-1-4613-2207-8_131
    [7]
    Heavens S N, Field J E.The ignition of a thin layer of explosive by impact[J].Proceedings of the Royal Society of London A:Mathematical and Physical Sciences, 1982, 379(1612):77-93. http://www.jstor.org/stable/78552
    [8]
    Field J E, Swallowe G M, Heavens S N.Ignition mechanisms of explosives during mechanical deformation[J].Proceedings of the Royal Society of London A:Mathematical and Physical Sciences, 1982, 382(1782):231-244. doi: 10.1098/rspa.1982.0099
    [9]
    Field J E, Palmer S J P, Pope P H, et al.Mechanical properties of PBXs and their behaviour during drop-weight impact[C]//Short J M.8th Symposium (International) on Detonation.White Oak, Maryland, USA: Naval Surface Weapons Center, 1985: 635-644.
    [10]
    Balzer J E, Field J E, Gifford M J, et al.High-speed photographic study of the drop-weight impact response of ultrafine and conventional PETN and RDX[J].Combustion and Flame, 2002, 130(4):298-306. doi: 10.1016/S0010-2180(02)00373-5
    [11]
    Hamdan S, Swallowe G M.The strain-rate and temperature dependence of the mechanical properties of polyetherketone and polyetheretherketone[J].Journal of Materials Science, 1996, 31(6):1415-1423. doi: 10.1007/BF00357847
  • Cited by

    Periodical cited type(11)

    1. 吴海波,武毅,张超,范红杰,杨钧森,吴艳青,金丰凯. 高燃速丁羟推进剂药浆在热与低速撞击刺激下点火响应的实验研究. 火炸药学报. 2025(01): 95-104 .
    2. 郭洪福,郑雄伟,马田,豆永鹏,彭军. HMX单晶的动态力学行为及断裂失效机理. 兵工学报. 2024(S1): 296-301 .
    3. 白志鑫,蒋城露,刘福生,刘其军. 含能材料“热点”点火研究进展. 火炸药学报. 2023(04): 285-298 .
    4. 高涵,冯晓军,尚宇,张坤. 混合炸药微结构设计与制备研究进展. 火炸药学报. 2023(09): 761-775 .
    5. 白志鑫,甘云丹,蒋城露,赵锋,尚海林,李星翰,刘福生,刘其军,常相辉. 基于三维离散元方法研究热点的位置和温度对奥克托今颗粒点火燃烧的影响. 原子与分子物理学报. 2022(05): 111-118 .
    6. 丁良政,张邹邹,卜雄洙,曹一涵. 基于点火增长模型的颗粒炸药低速撞击特性研究. 火工品. 2022(03): 38-43 .
    7. 闫治宇,王良辰,宋晨,李倩倩,牛余雷,王金华,黄佐华. RDX聚光点火和反应过程的光学诊断. 火炸药学报. 2021(04): 468-473 .
    8. 李宏伟,郭婉肖,王茂,韩志伟,陈坤,王伯良. 高速撞击下温压炸药的响应敏感性. 爆破器材. 2020(05): 7-13 .
    9. 孙文旭,王万军,罗智恒,代晓淦,刘彤,章定国. 低压长脉冲作用下PBX炸药的响应特性. 弹道学报. 2019(01): 75-79+84 .
    10. 张钊,吴艳青. 糖颗粒对HMX和RDX两种单质炸药非冲击点火的影响. 含能材料. 2019(10): 805-811 .
    11. 杨洁,尚海林,李克武,黄学义,何真. 落锤撞击下非均匀炸药点火特性实验研究. 高压物理学报. 2017(06): 820-824 .

    Other cited types(9)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (4488) PDF downloads(405) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return