Volume 37 Issue 2
Mar.  2017
Turn off MathJax
Article Contents
Xie Zheng, Xie Jian, Li Liang. A three-order finite volume method and its applicationto under-expanded jet shock wave structure simulation[J]. Explosion And Shock Waves, 2017, 37(2): 347-352. doi: 10.11883/1001-1455(2017)02-0347-06
Citation: Xie Zheng, Xie Jian, Li Liang. A three-order finite volume method and its applicationto under-expanded jet shock wave structure simulation[J]. Explosion And Shock Waves, 2017, 37(2): 347-352. doi: 10.11883/1001-1455(2017)02-0347-06

A three-order finite volume method and its applicationto under-expanded jet shock wave structure simulation

doi: 10.11883/1001-1455(2017)02-0347-06
  • Received Date: 2015-10-26
  • Rev Recd Date: 2016-03-31
  • Publish Date: 2017-03-25
  • By considering the under-expanded jet flow from nozzle exit, the integral form Euler equations for unsteady compressible flow in the Lagrange coordinates of a moving control volume was developed. By using three-order essentially non-oscillatory (ENO) interpolations at cell interfaces, a three-order ENO finite volume method for the integral form Euler equations was presented. The Sod shock tube case and nozzle outlet under-expanded jet shock wave structures were used to test the proposed scheme. The numerical results demonstrate that the method is accurate and non-oscillatory, and it can capture the wave structures of jet flow fields including shock cell structure, slip lines, jet boundary and the triple point well. Meanwhile, the simulated Mach disk locations in wave structures coincide with the experimentally measured ones, especially the error of the first Mach disk locations in wave structures between the numerical results and the experimental results was less than 1.1%.
  • loading
  • [1]
    Matsuda T, Umeda Y, Ishii R, et al.Numerical and experimental studies on chocked under-expanded jets[C]//19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference.Honolulu, HI, USA, 1987, 7: 87-1378-281.
    [2]
    刘小军, 傅德彬, 牛青林, 等.燃气射流冲击传热特性的数值模拟[J].爆炸与冲击, 2015, 35(2):229-235. http://www.bzycj.cn/CN/abstract/abstract9452.shtml

    Liu Xiaojun, Fu Debin, Niu Qinlin, et al.Numerical simulation of heat transfer for exhausted gas jet impinging[J].Explosion and Shock Waves, 2015, 35(2):229-235. http://www.bzycj.cn/CN/abstract/abstract9452.shtml
    [3]
    薛晓春, 余永刚, 张琦.双股燃气射流在充液室内扩展特性的实验研究[J].爆炸与冲击, 2013, 33(5):449-455. doi: 10.3969/j.issn.1001-1455.2013.05.001

    Xue Xiaochun, Yu Yonggang, Zhang Qi.Experimental study on expansion characteristics of twin combustion-gas jets in liquid filled chamber[J].Explosion and Shock Waves, 2013, 33(5):449-455. doi: 10.3969/j.issn.1001-1455.2013.05.001
    [4]
    Ivan L, Groth C P T.High-order central ENO finite-volume scheme with adaptive mesh refinement[C]//18th AIAA Computational Fluid Dynamics Conference.Miami, Florida, 2007.
    [5]
    Luo H, Luo L P, Nourgaliev R, et al.A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids[J].Journal of Computational Physics, 2010, 229(19):6961-6978. doi: 10.1016/j.jcp.2010.05.033
    [6]
    范进之, 李桦.高精度有限体积法与间断有限元法的比较[J].国防科技大学学报, 2014, 36(5):33-38. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201405006

    Fan Jinzhi, Li Hua.Comparison of high-precision finite volume method and discontinuous Galerkin method[J].Journal of National University of Defense Technology, 2014, 36(5):33-38. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201405006
    [7]
    Harten A, Enquist B, Osher S, et al.Uniformly high order essentially non-oscillatory schemes[J].Journal of Computational Physics, 1987, 71(2):231-303. doi: 10.1016-0021-9991(87)90031-3/
    [8]
    程晓晗, 封建湖, 聂玉峰.求解双曲守恒方程的WENO型熵相容格式[J].爆炸与冲击, 2014, 34(4):501-507. http://www.bzycj.cn/CN/abstract/abstract8897.shtml

    Cheng Xiaohan, Feng Jianhu, Nie Yufeng.WENO type entropy consistent scheme for hyperbolic conservation laws[J].Explosion and Shock Waves, 2014, 34(4):501-507. http://www.bzycj.cn/CN/abstract/abstract8897.shtml
    [9]
    徐文灿, 黄振宇.高精度ENO格式在射流数值模拟中的应用[J].空气动力学学报, 2001, 19(4):401-406. doi: 10.3969/j.issn.0258-1825.2001.04.006

    Xu Wencan, Huang Zhenyu.Flow field calculation with high resolution ENO[J].Acta Aerodynamica Sinica, 2001, 19(4):401-406. doi: 10.3969/j.issn.0258-1825.2001.04.006
    [10]
    陆霄露, 邓康耀.进排气一维非定常流动的基本无振荡有限体积法的研究[J].内燃机工程, 2013, 34(2):52-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKV20132013060900061050

    Lu Xiaolu, Deng Kangyao.Study of essentially non-oscillatory finite method for one-dimension unsteady intake and exhaust flows[J].Chinese Internal Combustion Engine Engineering, 2013, 34(2):52-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKV20132013060900061050
    [11]
    Wang Yongjian, Zhao Ning, Wang Donghong, et al.A kind essentially non-oscillatory finite volume scheme in Lagrangian coordinates[J].Journal on Numerical Methods and Computer Application, 2007, 28(4):250-259.
    [12]
    朱孙科, 陈二云, 马大为, 等.燃气自由射流的正格式数值模拟[J].空气动力学报, 2011, 29(3):380-384. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201103020

    Zhu Sunke, Chen Eryun, Ma Dawei, et al.Numerical simulation of gas free jet by positive schemes[J].Acta Aerodynamica Sinica, 2011, 29(3):380-384. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201103020
    [13]
    Ruggles A J, Ekoto I W.Experimental investigation of nozzle aspect ratio effects on under-expanded hydrogen jet release characteristics[J].International Journal of Hydrogen Energy, 2014, 39(35):20331-20338. doi: 10.1016/j.ijhydene.2014.04.143
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (4192) PDF downloads(378) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return