Citation: | Zhang Tao, Gu Yan, Zhao Jibo, Liu Yusheng, Wu Xing. Chemical reaction zone length of JBO-9021[J]. Explosion And Shock Waves, 2017, 37(3): 415-421. doi: 10.11883/1001-1455(2017)03-0415-07 |
[1] |
Armstrong M R, Crowhurst J C, Bastea S, et al. Observation of off-hugoniot shocked states with ultrafast time resolution[C]//Proceedings of the 14th International Detonation Symposium. Albuquerque: Sandia National Laboratory, 2010: 366-373.
|
[2] |
Mattsson A E, Wixom R R, Mattsson T R. Calculating hugoniots for molecular crystals from first principles[C]//Proceedings of the 14th International Detonation Symposium. Albuquerque: Sandia National Laboratory, 2010: 537-544.
|
[3] |
黄奎邦, 陈永丽, 于鑫, 等.JB-9014炸药的化学反应率参数及应用研究[J].爆炸与冲击, 2013, 33(增):140-144. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ2013S1025.htm
Huang Kuibang, Chen Yongli, Yu Xin, et al. Parameters and application research of reaction rate for JB-9014 explosive[J]. Explosion and Shock Waves, 2013, 33(suppl):140-144. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ2013S1025.htm
|
[4] |
Bouyer V, Doucet M, Decaris L. Experimental measurements of the detonation wave profile in a TATB based explosive[C]//EPJ Web of Conferences 10. DOI: 10.1051/epjconf/20101000030.
|
[5] |
Tarver C M. Detonation reaction zones in condensed explosives[J]. Aip Conference Proceedings, 2005, 845(1):1026-1029. http://digital.library.unt.edu/ark:/67531/metadc885771/
|
[6] |
Hansen J S, Nowakowski B, Lemarchand A. Molecular-dynamics simulations and master-equation description of a chemical wave front: Effects of density and size of reaction zone on propagation speed[J]. Journal of Chemical Physics, 2006, 124(3):034503. doi: 10.1063/1.2161209
|
[7] |
Pulham C R, Millar D I A, Oswald I D H, et al. Pressure-cooking of explosives: The crystal structure of a high-pressure, high-temperature form of RDX as determined by X-ray and neutron diffraction[C]//Proceedings of the 14th International Detonation Symposium. Albuquerque: Sandia National Laboratory, 2010: 395-400.
|
[8] |
Bouyer V, Hebert P, Doucet M, et al. Experimental measurements of the chemical reaction zone of TATB and HMX based explosives[C]//Biennial International Conference of the Aps Topical Group on Shock Compression of Condensed Matter. 2012, 1426(1): 209-212.
|
[9] |
Bouyer V, Sheffield S A, Dattelbaum D M, et al. Experimental measurements of the chemical reaction zone of detonating liquid explosives[C]//16th APS Topical Conference on Shock Compression of Condensed Matter. The American Physical Society, 2009, 54(8): 177-180.
|
[10] |
Utkin A V, Mochalova V M, Zav'yalov V S, et al. Influence of powder dispersion on the reaction zone structure for pressed RDX and HMX[C]//Proceedings of the 14th International Detonation Symposium. Albuquerque: Sandia National Laboratory, 2010: 194-198.
|
[11] |
Plaksin I, Rodrigues L, Plaksin S, et al. Effect of the reaction light absorption on the formation of the detonation reaction zone 3D-structure in PBXs[C]//Proceedings of the 14th International Detonation Symposium. Albuquerque: Sandia National Laboratory, 2010: 241-250.
|
[12] |
Engelke R, Sheffield S A, Stacy H L. Chemical-reaction-zone lengths in condensed-phase explosives[J]. Physics of Fluids, 2004, 16(11):4143-4149. doi: 10.1063/1.1804552
|
[13] |
Jensen B J, Holtkamp D B, Rigg P A, et al. Accuracy limits and window corrections for photon Doppler velocimetry[J]. Journal of Applied Physics, 2007, 101(1):013523-013523-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=78866ffa12d40d8d8d2419579d334ddb
|
[14] |
LaLone B M, Fat'yanov O V, Asay J R, et al. Velocity correction and refractive index changes for[100] lithium fluoride opticalwindows under shock compression, recompression, and unloading[J]. Journal of Applied Physics, 2008, 103(9):093505-093505-7. doi: 10.1063/1.2912500
|
[15] |
Mader C L. Numerical modeling of detonation[M]. Berkely, California: University of California Press, 1979:48.
|
[16] |
Carter W J. Hugoniot equation of state of some alkali halides[J]. High Temperatures-High Pressures, 1973, 5(3):313-318.
|
[17] |
Seitz W L, Stacy H L, Engelke R, et al. Detonation reaction-zone structure of PBX-9502[C]//Proceedings of the Ninth International Detonation Symposium. Albuquerque: Sandia National Laboratory, 1989: 675.
|
[18] |
Tarver C M, Breithaupt R D, Kury J W. Current experimental and theoretical understanding of detonation waves in heterogeneous solid explosives[C]//Proceedings of the Eighth International Detonation Symposium. Albuquerque: Sandia National Laboratory, 1985: 692.
|
[19] |
Sheffield S A, Bloomquist D D, Tarver C M. Subnanosecond measurements of detonation fronts in solid high explosives[J]. Journal of Chemical Physics, 1984, 80(8):3831-3844. doi: 10.1063/1.447164
|
1. | 李晋,李剑,孔庆珊,裴志鹏,张恒冉,赵舒雅. 基于组稀疏的桥梁混凝土波速反演重建方法. 计算机测量与控制. 2025(01): 261-268 . ![]() | |
2. | 孙传猛,陈嘉欣,原玥,裴东兴,马铁华. 基于串并行双分支网络的冲击波信号重构方法. 振动与冲击. 2024(06): 38-49 . ![]() | |
3. | 魏晓曼,李剑,刘晓佳,郭陈莉,展勇忠,刘代劲. 基于空间约束联合字典学习的三维冲击波超压场重建. 探测与控制学报. 2024(02): 108-114 . ![]() | |
4. | 宋一娇,孔慧华,李剑,齐子文,张然. 基于超拉普拉斯正则化的冲击波超压层析重建. 电子测量技术. 2024(10): 160-167 . ![]() | |
5. | 杨洋,杜红棉,郭晋杰,王孺豪. 基于深度学习的残缺冲击波信号构建方法. 中北大学学报(自然科学版). 2024(05): 687-694 . ![]() | |
6. | 刘晓佳,李剑,孙泽鹏,马明星,魏晓曼. 基于三维走时的冲击波超压场重建方法. 舰船电子工程. 2023(01): 76-81 . ![]() | |
7. | 闫昕蕾,李剑,孔慧华,王黎明,郭亚丽. 基于压缩感知的冲击波超压场重建方法. 电子测量技术. 2022(02): 84-90 . ![]() | |
8. | 孙传猛,裴东兴,陈嘉欣,许瑞嘉,崔春生,高群昌. 基于深度学习的爆炸冲击波信号重构模型. 计测技术. 2022(02): 57-67 . ![]() | |
9. | 吕中杰,李浩阳,高晨宇,朱学亮,黄风雷. 基于地面反射冲击波与遗传算法的动爆超压场重建方法. 安全与环境学报. 2022(04): 1872-1878 . ![]() | |
10. | 钞红晓,胡浩,雷强,高瑞,姚国庆. 基于地震波触发的战斗部动爆冲击波试验研究. 爆炸与冲击. 2021(08): 105-113 . ![]() | |
11. | 姚悦,丁永红,裴东兴,张晓光. 空气中爆炸冲击波曲线重建方法. 计量学报. 2019(04): 636-641 . ![]() | |
12. | 赵化彬,张志杰. 基于非均匀有理B样条“蛛网”插值的冲击波压力场重建方法. 科学技术与工程. 2017(18): 258-264 . ![]() | |
13. | 杨志,张志杰,夏永乐. 基于B样条插值拟合的冲击波超压场重建. 科学技术与工程. 2016(07): 236-240 . ![]() |