Citation: | Zhang Jinghua, Zhao Xingxing, Li Shirong. Dynamic buckling analysis of functionally graded beam under thermal shock in Hamilton system[J]. Explosion And Shock Waves, 2017, 37(3): 431-438. doi: 10.11883/1001-1455(2017)03-0431-08 |
[1] |
仲政, 吴林志, 陈伟球.功能梯度材料与结构的若干力学问题研究进展[J].力学进展, 2010, 40(5):528-541. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201002077615
Zhong Zheng, Wu Linzhi, Chen Weiqiu.Pregress in the study on mechanics problems of functionally graded materials and structures[J].Advances in Mechanics, 2010, 40(5):528-541. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201002077615
|
[2] |
张靖华, 潘双超, 李世荣.热冲击下功能梯度圆板的动力屈曲[J].应用力学学报, 2015, 32(6):901-907. http://d.old.wanfangdata.com.cn/Periodical/yylxxb201506003
Zhang Jinghua, Pan Shuangchao, Li Shirong.Dynamic buckling of functionally graded circular plate under thermal shock[J].Chinese Journal of Applied Mechanics, 2015, 32(6):901-907. http://d.old.wanfangdata.com.cn/Periodical/yylxxb201506003
|
[3] |
Mehrian S M N, Naei M H.Two dimensional analysis of functionally graded partial annular disk under radial thermal shock using hybrid Fourier-Laplace transform[J].Applied Mechanics and Materials, 2013, 436:92-99. doi: 10.4028/www.scientific.net/AMM.436
|
[4] |
Mirzavand B, Eslami M R, Shakeri M.Dynamic thermal postbuckling analysis of piezoelectric functionally graded cylindrical shells[J].Journal of Thermal Stresses, 2010, 33(7):646-660. doi: 10.1080/01495731003776010
|
[5] |
Mirzavand B, Eslami M R, Reddy J N.Dynamic thermal postbuckling analysis of shear deformable piezoelectric FGM cylindrical shells[J].Journal of Thermal Stresses, 2013, 36(3):189-206. doi: 10.1080/01495739.2013.768443
|
[6] |
Ma L S, Wang T J.Relationships between the solutions of axisymmetric bending and buckling of functionally graded circular plates based on the third-order plate theory and the classical solutions for isotropic circular plates[J].International Journal of Solids and Structures, 2004, 41(1):85-101. doi: 10.1016/j.ijsolstr.2003.09.008
|
[7] |
Li S R, Zhang J H, Zhao Y G.Thermal post-buckling of functionally graded material Timoshenko beams[J].Applied Mathematics and Mechanics, 2006, 27(6):803-811. doi: 10.1007/s10483-006-0611-y
|
[8] |
Li S R, Zhang J H, Zhao Y G.Nonlinear thermo-mechanical post-buckling of circular FGM plate with geometric imperfection[J].Thin Walled Structures, 2007, 45(5):528-536. doi: 10.1016/j.tws.2007.04.002
|
[9] |
Shegokar N L, Lal A.Thermo-electromechanically induced stochastic post buckling response of piezoelectric functionally graded beam[J].International Journal of Mechanics and Materials in Design, 2014, 10(3):329-349. doi: 10.1007/s10999-014-9246-1
|
[10] |
Shariyat M.Dynamic thermal buckling of suddenly heated temperature-dependent FGM cylindrical shells under combined axial compression and external pressure[J].International Journal of Solids and Structures, 2008, 45(9):2598-2612. doi: 10.1016/j.ijsolstr.2007.12.015
|
[11] |
Sohn K J, Kim J H.Structural stability of functionally graded panels subjected to aero-thermal loads[J].Composite Structure, 2007, 82(3):317-325. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=11f85b2888164944f65097acd729e1bc
|
[12] |
徐新生, 段政, 马源, 等.辛方法和弹性圆柱壳在内外压和轴向冲击下的动态屈曲[J].爆炸与冲击, 2007, 27(6):509-514. doi: 10.3321/j.issn:1001-1455.2007.06.005
Xu Xinsheng, Duan Zheng, Ma Yuan, et al.A symplectic method and dynamic buckling of elastic cylindrical shells under both axial impact and internal or external pressure[J].Explosion and Shock Waves, 2007, 27(6):509-514. doi: 10.3321/j.issn:1001-1455.2007.06.005
|
[13] |
谈梅兰, 吴光, 王鑫伟.矩形薄板面内非线性分布载荷下的辛弹性力学解[J].工程力学, 2008, 25(10):50-53. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200810012.htm
Tan Meilan, Wu Guang, Wang Xinwei.Symplectic elasticity solutions for thin rectangular plates subjected to nonlinear distributed in plane loadings[J].Engineering Mechanics, 2008, 25(10):50-53. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200810012.htm
|
[14] |
刘淼.功能梯度材料结构的非传统Hamilton变分原理及其有限元法[D].上海: 同济大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10247-2008049158.htm
|
[15] |
褚洪杰, 徐新生, 林志华, 等.弹性梁非线性热屈曲行为与辛本征解展开方法[J].大连理工大学学报, 2011, 51(1):1-6. doi: 10.3969/j.issn.1008-407X.2011.01.001
Chu Hongjie, Xu Xinsheng, Ling Zhihua, et al.Nonlinear thermal buckling of elastic beams and expanding method of symplectic eigensolutions[J].Journal of Dalian University of Technology, 2011, 51(1):1-6. doi: 10.3969/j.issn.1008-407X.2011.01.001
|
[16] |
Sun J B, Xu X S, Lim C W.Buckling of functionally graded cylindrical shells under combined thermal and compressive loads[J].Journal of Thermal Stresses, 2014, 37(3):340-362. doi: 10.1080/01495739.2013.869143
|
[17] |
Zhang J H, Li G Z, Li S R.DQM based thermal stresses analysis of a FG cylindrical shell under thermal shock[J].Journal of Thermal Stresses, 2015, 38(9), 959-982. doi: 10.1080/01495739.2015.1038488
|
[1] | ZHANG Qimin, ZHANG Xu, ZHAO Kang, SHU Junxiang, ZHANG Rong, ZHONG Bin. Law of reaction growth of shock initiation on the TATB based insensitive explosive JB-9014[J]. Explosion And Shock Waves, 2019, 39(4): 041405. doi: 10.11883/bzycj-2018-0050 |
[2] | PEI Hongbo, LIU Junming, ZHANG Xu, SHU Junxiang, HUANG Wenbin, ZHENG Xianxu. Measurement of Hugoniot relation for unreacted JB-9014 explosive with reverse-impact method[J]. Explosion And Shock Waves, 2019, 39(5): 052301. doi: 10.11883/bzycj-2017-0395 |
[3] | LU Qiang, WANG Zhanjiang, ZHANG Jingsen, DING Yang, LI Jin, GUO Zhiyun. Comparative studies on characteristics of elastic wave radiated from the tamped explosion in loess and rock-like sandy soil[J]. Explosion And Shock Waves, 2019, 39(5): 052202. doi: 10.11883/bzycj-2018-0025 |
[4] | LU Qiang, WANG Zhanjiang, ZHU Yurong, DING Yang, GUO Zhiyun. Construction of motion and deformation field in granite under tamped explosion using wave propagation coefficient[J]. Explosion And Shock Waves, 2019, 39(8): 083103. doi: 10.11883/bzycj-2019-0140 |
[5] | ZHANG Zhen, WANG Yonggang. Measurement system for split Hopkinson pressure bar apparatus based on laser interferometry technique[J]. Explosion And Shock Waves, 2018, 38(5): 1165-1171. doi: 10.11883/bzycj-2017-0116 |
[6] | PEI Hongbo, HUANG Wenbin, QIN Jincheng, ZHANG Xu, ZHAO Feng, ZHENG Xianxu. Reaction zone structure of JB-9014 explosive measured by PDV[J]. Explosion And Shock Waves, 2018, 38(3): 485-490. doi: 10.11883/bzycj-2017-0379 |
[7] | Yao Cheng-bao, Li Ruo, Tian Zhou, Guo Yong-hui. Two dimensional simulation for shock wave produced by strong explosion in free air[J]. Explosion And Shock Waves, 2015, 35(4): 585-590. doi: 10.11883/1001-1455(2015)04-0585-06 |
[8] | ZHOU Jie, TAO Gang, WANG Jian. Numericalsimulationoflunginjuryinducedbyshockwave[J]. Explosion And Shock Waves, 2012, 32(4): 418-422. doi: 10.11883/1001-1455(2012)04-0418-05 |
[9] | LI Hai-tao, ZHU Xi, WANG Lu, ZHANG Zhen-hua. Asimplifiedtheorymodelforbulkmovementofship-likebeams subjectedtosphericalshockwaves[J]. Explosion And Shock Waves, 2010, 30(1): 85-90. doi: 10.11883/1001-1455(2010)01-0085-06 |
[10] | CHEN Jun, ZENG Dai-peng, SUN Cheng-wei, ZHANG Zhen-yu, TAND uo-wang. Equationsofstateforoverdriven-detonationproducts ofJB-9014explosive[J]. Explosion And Shock Waves, 2010, 30(6): 583-587. doi: 10.11883/1001-1455(2010)06-0583-05 |
[11] | YAN Feng, JIANG Fu-xing. Experiment on rock damage under blasting load[J]. Explosion And Shock Waves, 2009, 29(3): 275-280. doi: 10.11883/1001-1455(2009)03-0275-06 |
[12] | SHI Hua-qiang, ZONG Zhi, JIA Jing-bei. Short-range characters of underwater blast waves[J]. Explosion And Shock Waves, 2009, 29(2): 125-130. doi: 10.11883/1001-1455(2009)02-0125-06 |
[13] | LI Jin-he, ZHAO Ji-bo, TAN Duo-wang, WANG Yan-ping, ZHANG Yuan-ping. Underwater shock wave performances of explosives[J]. Explosion And Shock Waves, 2009, 29(2): 172-176. doi: 10.11883/1001-1455(2009)02-0172-05 |
[14] | WANG Gui-ji, DENG Xiang-yang, TAN Fu-li, LIU Jun, ZHANG Ning, GU Yan, PENG Qi-xian, WU Gang, HAN Mei. Velocity measurement of the small size flyer of an exploding foil initiator[J]. Explosion And Shock Waves, 2008, 28(1): 28-31. doi: 10.11883/1001-1455(2008)01-0028-05 |
[15] | ZHANG Xin-hua, TANG Zhi-ping, XU Wei-wei, TANG Xiao-jun, ZHENG Hang. Experimental study on characteristics of shock-induced phase transition and spallation in FeMnNi alloy[J]. Explosion And Shock Waves, 2007, 27(2): 103-108. doi: 10.11883/1001-1455(2007)02-0103-06 |
[16] | LI Zhi-peng, LONG Xin-ping, HUANG Yi-min, HE Bi, WANG Rong, HE Song-wei. Electromagnetic gauge measurements of shock initiating JOB-9003 explosive[J]. Explosion And Shock Waves, 2006, 26(3): 269-272. doi: 10.11883/1001-1455(2006)03-0269-04 |
[17] | YU De-shui, ZHAO Feng, TAN Duo-wang, PENG Qi-xian, FANG Qing. Experimental studies on detonation driving behavior of JOB-9003 and JB-9014 slab explosives[J]. Explosion And Shock Waves, 2006, 26(2): 140-144. doi: 10.11883/1001-1455(2006)02-0140-05 |
[18] | ZHAO Jian-heng, SUN Cheng-wei, TAN Fu-li, PENG Qi-xian, WANG Gui-ji. Launch technique for isentropic compression flyer plates magnetically driven by using fast pulsed power[J]. Explosion And Shock Waves, 2005, 25(4): 303-308. doi: 10.11883/1001-1455(2005)04-0303-06 |
[19] | JIANG Xiao-hua, LONG Xin-ping, HE Bi, CHEN Lang, HUANG Yi-min, ZHANG Hai-bin. Numerical simulation of detonation in aluminized explosives containing oxidiser (AP)[J]. Explosion And Shock Waves, 2005, 25(1): 26-30. doi: 10.11883/1001-1455(2005)01-0026-05 |
[20] | DENG Xiang-yang, ZHAO Jian-heng, MA Dong-li, PENG Qi-xian. Experimental study on velocity of a film flyer driven by electrical gun[J]. Explosion And Shock Waves, 2005, 25(4): 382-384. doi: 10.11883/1001-1455(2005)04-0382-03 |