Volume 37 Issue 3
Apr.  2017
Turn off MathJax
Article Contents
Zhang Jinghua, Zhao Xingxing, Li Shirong. Dynamic buckling analysis of functionally graded beam under thermal shock in Hamilton system[J]. Explosion And Shock Waves, 2017, 37(3): 431-438. doi: 10.11883/1001-1455(2017)03-0431-08
Citation: Zhang Jinghua, Zhao Xingxing, Li Shirong. Dynamic buckling analysis of functionally graded beam under thermal shock in Hamilton system[J]. Explosion And Shock Waves, 2017, 37(3): 431-438. doi: 10.11883/1001-1455(2017)03-0431-08

Dynamic buckling analysis of functionally graded beam under thermal shock in Hamilton system

doi: 10.11883/1001-1455(2017)03-0431-08
  • Received Date: 2015-11-23
  • Rev Recd Date: 2016-06-20
  • Publish Date: 2017-05-25
  • Based on the Euler beam theory, the dynamic buckling of the functionally graded beam subjected to thermal shock was investigated in the Hamilton system. The material properties of the functionally graded beam were assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The transient temperature fields were solved analytically using the Laplace transform and power series method. It was shown that the dynamic buckling problem can be reduced to a zero-eigenvalue problem in the symplectic space, the buckling loading and the buckling mode of the FGM beam correspond to the generalized eigenvalue and eigen solution. The buckling mode and the buckling thermal axial forces can be obtained through bifurcation condition, and the buckling temperature rise of the FGM beam can be obtained by inverse solution. In this research, the solution process for dynamic buckling of the FGM beam subjected to thermal shock using the symplectic method were given, and the effects of the material constitution, geometric parameters and the parameters of thermal shock load on the critical temperature were discussed.
  • loading
  • [1]
    仲政, 吴林志, 陈伟球.功能梯度材料与结构的若干力学问题研究进展[J].力学进展, 2010, 40(5):528-541. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201002077615

    Zhong Zheng, Wu Linzhi, Chen Weiqiu.Pregress in the study on mechanics problems of functionally graded materials and structures[J].Advances in Mechanics, 2010, 40(5):528-541. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201002077615
    [2]
    张靖华, 潘双超, 李世荣.热冲击下功能梯度圆板的动力屈曲[J].应用力学学报, 2015, 32(6):901-907. http://d.old.wanfangdata.com.cn/Periodical/yylxxb201506003

    Zhang Jinghua, Pan Shuangchao, Li Shirong.Dynamic buckling of functionally graded circular plate under thermal shock[J].Chinese Journal of Applied Mechanics, 2015, 32(6):901-907. http://d.old.wanfangdata.com.cn/Periodical/yylxxb201506003
    [3]
    Mehrian S M N, Naei M H.Two dimensional analysis of functionally graded partial annular disk under radial thermal shock using hybrid Fourier-Laplace transform[J].Applied Mechanics and Materials, 2013, 436:92-99. doi: 10.4028/www.scientific.net/AMM.436
    [4]
    Mirzavand B, Eslami M R, Shakeri M.Dynamic thermal postbuckling analysis of piezoelectric functionally graded cylindrical shells[J].Journal of Thermal Stresses, 2010, 33(7):646-660. doi: 10.1080/01495731003776010
    [5]
    Mirzavand B, Eslami M R, Reddy J N.Dynamic thermal postbuckling analysis of shear deformable piezoelectric FGM cylindrical shells[J].Journal of Thermal Stresses, 2013, 36(3):189-206. doi: 10.1080/01495739.2013.768443
    [6]
    Ma L S, Wang T J.Relationships between the solutions of axisymmetric bending and buckling of functionally graded circular plates based on the third-order plate theory and the classical solutions for isotropic circular plates[J].International Journal of Solids and Structures, 2004, 41(1):85-101. doi: 10.1016/j.ijsolstr.2003.09.008
    [7]
    Li S R, Zhang J H, Zhao Y G.Thermal post-buckling of functionally graded material Timoshenko beams[J].Applied Mathematics and Mechanics, 2006, 27(6):803-811. doi: 10.1007/s10483-006-0611-y
    [8]
    Li S R, Zhang J H, Zhao Y G.Nonlinear thermo-mechanical post-buckling of circular FGM plate with geometric imperfection[J].Thin Walled Structures, 2007, 45(5):528-536. doi: 10.1016/j.tws.2007.04.002
    [9]
    Shegokar N L, Lal A.Thermo-electromechanically induced stochastic post buckling response of piezoelectric functionally graded beam[J].International Journal of Mechanics and Materials in Design, 2014, 10(3):329-349. doi: 10.1007/s10999-014-9246-1
    [10]
    Shariyat M.Dynamic thermal buckling of suddenly heated temperature-dependent FGM cylindrical shells under combined axial compression and external pressure[J].International Journal of Solids and Structures, 2008, 45(9):2598-2612. doi: 10.1016/j.ijsolstr.2007.12.015
    [11]
    Sohn K J, Kim J H.Structural stability of functionally graded panels subjected to aero-thermal loads[J].Composite Structure, 2007, 82(3):317-325. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=11f85b2888164944f65097acd729e1bc
    [12]
    徐新生, 段政, 马源, 等.辛方法和弹性圆柱壳在内外压和轴向冲击下的动态屈曲[J].爆炸与冲击, 2007, 27(6):509-514. doi: 10.3321/j.issn:1001-1455.2007.06.005

    Xu Xinsheng, Duan Zheng, Ma Yuan, et al.A symplectic method and dynamic buckling of elastic cylindrical shells under both axial impact and internal or external pressure[J].Explosion and Shock Waves, 2007, 27(6):509-514. doi: 10.3321/j.issn:1001-1455.2007.06.005
    [13]
    谈梅兰, 吴光, 王鑫伟.矩形薄板面内非线性分布载荷下的辛弹性力学解[J].工程力学, 2008, 25(10):50-53. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200810012.htm

    Tan Meilan, Wu Guang, Wang Xinwei.Symplectic elasticity solutions for thin rectangular plates subjected to nonlinear distributed in plane loadings[J].Engineering Mechanics, 2008, 25(10):50-53. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200810012.htm
    [14]
    刘淼.功能梯度材料结构的非传统Hamilton变分原理及其有限元法[D].上海: 同济大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10247-2008049158.htm
    [15]
    褚洪杰, 徐新生, 林志华, 等.弹性梁非线性热屈曲行为与辛本征解展开方法[J].大连理工大学学报, 2011, 51(1):1-6. doi: 10.3969/j.issn.1008-407X.2011.01.001

    Chu Hongjie, Xu Xinsheng, Ling Zhihua, et al.Nonlinear thermal buckling of elastic beams and expanding method of symplectic eigensolutions[J].Journal of Dalian University of Technology, 2011, 51(1):1-6. doi: 10.3969/j.issn.1008-407X.2011.01.001
    [16]
    Sun J B, Xu X S, Lim C W.Buckling of functionally graded cylindrical shells under combined thermal and compressive loads[J].Journal of Thermal Stresses, 2014, 37(3):340-362. doi: 10.1080/01495739.2013.869143
    [17]
    Zhang J H, Li G Z, Li S R.DQM based thermal stresses analysis of a FG cylindrical shell under thermal shock[J].Journal of Thermal Stresses, 2015, 38(9), 959-982. doi: 10.1080/01495739.2015.1038488
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (4442) PDF downloads(405) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return