Citation: | Shi Chunying, Xu Songlin, Shan Junfang, Wang Pengfei, Hu Shisheng. Plastic instability of LY12 aluminum alloy ring under longitudinal impact compression[J]. Explosion And Shock Waves, 2017, 37(3): 471-478. doi: 10.11883/1001-1455(2017)03-0471-08 |
[1] |
Avitzur B.Forging of hollow disk[J].Israel Journal of Technology, 1964, 2(3):295-304.
|
[2] |
Hill R.The mathematical theory of plasticity[M].Oxford:Oxford University Press, 1950.
|
[3] |
Male A T, Depierre V.The validity of mathematical solutions for determining friction from the ring compression test[J].Journal of Tribology, 1970, 92(3):389. doi: 10.1115-1.3451419/
|
[4] |
Male A T, Cockcroft M G.A method for the determination of the coefficient of friction of metals under conditions of bulk plastic deformation[J].Journal of the Institute of Metals, 1964, 93:38-46. http://cn.bing.com/academic/profile?id=dcc4dfaf7e38bf5041e155e592f3b877&encoded=0&v=paper_preview&mkt=zh-cn
|
[5] |
Hartley R S, Cloete T J, Nurick G N.An experimental assessment of friction effects in the split Hopkinson pressure bar using the ring compression test[J].International Journal of Impact Engineering, 2007, 34(10):1705-1728. doi: 10.1016/j.ijimpeng.2006.09.003
|
[6] |
Alves M, Karagiozova D, Micheli G B, et al.Limiting the influence of friction on the split Hopkinson pressure bar tests by using a ring specimen[J].International Journal of Impact Engineering, 2012, 49(6):130-141. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=453b3b533be09d4a906e27b52a4eda8b
|
[7] |
Song B, Chen W, Ge Y, et al.Dynamic and quasi-static compressive response of porcine muscle.[J].Journal of Biomechanics, 2007, 40(13):2999-3005. doi: 10.1016/j.jbiomech.2007.02.001
|
[8] |
杨茨, 徐松林, 易洪昇.冲击载荷下圆环纵向压缩力学行为研究[J].实验力学, 2014, 29(1):18-25. http://d.old.wanfangdata.com.cn/Periodical/sylx201401003
Yang Ci, Xu Songlin, Yi Hongsheng.Research on mechanical behaviors of ring under longitudinal impact load[J].Journal of Experimental Mechanics, 2014, 29(1):18-25. http://d.old.wanfangdata.com.cn/Periodical/sylx201401003
|
[9] |
杨茨, 徐松林, 易洪昇.冲击载荷下圆环压缩变形特性研究[J].振动与冲击, 2015, 34(11):128-132. http://d.old.wanfangdata.com.cn/Periodical/zdycj201511023
Yang Ci, Xu Songlin, Yi Hongsheng.Research on deformation properties of ring under longitudinal impact load[J].Vibration and Impact, 2015, 34(11):128-132. http://d.old.wanfangdata.com.cn/Periodical/zdycj201511023
|
[10] |
Liu G, Wang L L, Liu Z Q, et al.Compressive formability of 7075 aluminum alloy rings under hydrostatic pressure[J].Transactions of Nonferrous Metals Society of China, 2006, 16(5):1103-1109. doi: 10.1016/S1003-6326(06)60385-3
|
[11] |
胡忠, 朱利华, 李家庆.圆环压缩过程的有限元模拟:一种标定摩擦系数理论曲线的新方法[J].金属学报, 1997, 33(4):337-344. doi: 10.3321/j.issn:0412-1961.1997.04.001
Hu Zhong, Zhu Lihua, Li Jiaqing.Simulation of ring compression by FEM:A new way to calibrate theoretical curves of friction coefficient[J].Acta Metallurgica Sinica, 1997, 33(4):337-344. doi: 10.3321/j.issn:0412-1961.1997.04.001
|
[12] |
卢维娴, 王礼立, 陆在庆.β-Ti合金在高应变率下的绝热剪切现象[J].金属学报, 1986, 22(4):39-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000292568
Lu Weixian, Wang Lili, Lu Zaiqing.Adiabatic shearing phenomenon of β-Ti alloy at high strain rates[J].Acta Metallurgica Sinica, 1986, 22(4):39-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000292568
|
[13] |
徐天平, 王礼立, 卢维娴.高应变率下钛合金Ti-6Al-4V的热-粘塑性特性和绝热剪切变形[J].爆炸与冲击, 1987, 7(1):1-8. http://www.bzycj.cn/CN/abstract/abstract10977.shtml
Xu Tianping, Wang Lili, Lu Weixian.The thermo-viscoplasticity and adiabatic shear deformation for a titanium alloy Ti-6Al-4V under high strain rates[J].Explosion and Shock Waves, 1987, 7(1):1-8. http://www.bzycj.cn/CN/abstract/abstract10977.shtml
|
[14] |
尹嘉明, 李伯龙, 韩鹏, 等.动态压缩下5A06铝合金剪切变形局部化[J].科学技术与工程, 2012, 12(17):4119-4123. doi: 10.3969/j.issn.1671-1815.2012.17.015
Yin Jiaming, Li Bolong, Han Peng, et al.Shear localization deformation in 5A05 aluminum alloy during compressive deformation[J].Science Technology and Engineering, 2012, 12(17):4119-4123. doi: 10.3969/j.issn.1671-1815.2012.17.015
|
[15] |
尚兵, 胡时胜, 王虎.0Cr17Mn5Ni4Mo3Al不锈钢绝热剪切破坏分析[J].实验力学, 2008, 23(4):339-344. http://d.old.wanfangdata.com.cn/Periodical/sylx200804008
Shang Bing, Hu Shisheng, Wang Hu.Analysis of adiabatic shear band failure of 0Cr17Mn5Ni4Mo3Al stainless steel[J].Journal of Experimental Mechanics, 2008, 23(4):339-344. http://d.old.wanfangdata.com.cn/Periodical/sylx200804008
|
[16] |
魏志刚, 李永池, 李剑荣, 等.冲击载荷作用下钨合金材料绝热剪切带形成机理[J].金属学报, 2000, 36(12):1263-1268. doi: 10.3321/j.issn:0412-1961.2000.12.008
Wei Zhigang, Li Yongchi, Li Jianrong, et al.Formation mechanism of adiabatic shear band in tungsten heavy alloys[J].Acta Metallurgica Sinica, 2000, 36(12):1263-1268. doi: 10.3321/j.issn:0412-1961.2000.12.008
|
[17] |
徐永波, 白以龙.动态载荷下剪切变形局部化、微结构演化与剪切断裂研究进展[J].力学进展, 2007, 37(4):496-516. doi: 10.3321/j.issn:1000-0992.2007.04.002
Xu Yongbo, Bai Yilong.Shear localization, microstructure evolution and fracture under high-strain rate[J].Advances in Mechanics, 2007, 37(4):496-516. doi: 10.3321/j.issn:1000-0992.2007.04.002
|
[18] |
Bai Y L.Thermo-plastic instability in simple shear[J].Journal of the Mechanics and Physics of Solids, 1982, 30(4):195-207. doi: 10.1016/0022-5096(82)90029-1
|
[19] |
Xu Y B, Zhong W L, Chen Y J, et al.Shear localization and recrystallization in dynamic deformation of 8090 Al-Li alloy[J].Materials Science and Engineering A, 2001, 299(1/2):287-295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d1a95e60e96bd1849977ba8ff9929746
|
[20] |
Xu Y B, Yu J Q, Shen L T, et al.Thermoplastic shear localization in titanium alloys[J].Materials Science and Technology, 2000, 19:609-611. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1444a11a2ae33338e2eff70cbd0e84a8
|
[1] | YANG Tianhao, CHONG Tao, LI Tao, FU Hua, HU Haibo. GPa-level slow-front ramp wave loading technology driven by non-shock initiation reaction[J]. Explosion And Shock Waves, 2023, 43(6): 064101. doi: 10.11883/bzycj-2022-0238 |
[2] | LIU Jun, SUN Zhiyuan, ZHANG Fengguo, WANG Pei. Simulation study of the recompression of metal spallation zone[J]. Explosion And Shock Waves, 2022, 42(3): 033101. doi: 10.11883/bzycj-2021-0262 |
[3] | SHI Tongya, LIU Dongsheng, CHEN Wei, XIE Puchu, WANG Xiaofeng, WANG Yonggang. Dynamic tensile behavior and spall fracture of GP1 stainless steel processed by selective laser melting[J]. Explosion And Shock Waves, 2019, 39(7): 073101. doi: 10.11883/bzycj-2019-0015 |
[4] | CHEN Zibo, XIE Puchu, LIU Dongsheng, CHEN Wei, WANG Yonggang. Quasi-isentropic compression technique based on generalized wave impedance gradient flyer[J]. Explosion And Shock Waves, 2019, 39(4): 041406. doi: 10.11883/bzycj-2018-0407 |
[5] | QIU Jiadong, LI Diyuan, LI Xibing, CHENG Tengjiao, LI Chongjin. Effect of pre-existing flaws on spalling fracture of granite[J]. Explosion And Shock Waves, 2018, 38(3): 665-670. doi: 10.11883/bzycj-2016-0310 |
[6] | LI Rui, HUANG Zhengxiang, ZU Xudong, XIAO Qiangqiang, JIA Xin. Spallation of targets subjected to vertical penetraion of explosively-formed projectiles[J]. Explosion And Shock Waves, 2018, 38(5): 1039-1044. doi: 10.11883/bzycj-2017-0055 |
[7] | Wu Xutao, Liao Li. Numerical simulation of stress wave attenuation in brittle material and spalling experiment design[J]. Explosion And Shock Waves, 2017, 37(4): 705-711. doi: 10.11883/1001-1455(2017)04-0705-07 |
[8] | Zhang Fengguo, Zhou Hongqiang, Hu Xiaomian, Wang Pei, Shao Jianli, Feng Qijing. Influence of void coalescence on spall evolution of ductile polycrystalline metal under dynamic loading[J]. Explosion And Shock Waves, 2016, 36(5): 596-602. doi: 10.11883/1001-1455(2016)05-0596-07 |
[9] | LI Xue-mei, WANG Xiao-song, WANG Peng-lai, LU Min, JIA Lu-feng. Spall of cylindrical copper by converging sliding detonation[J]. Explosion And Shock Waves, 2009, 29(2): 162-166. doi: 10.11883/1001-1455(2009)02-0162-05 |
[10] | CHEN Yong-tao, TANG Xiao-jun, LI Qing-zhong, HU Hai-bo, XU Yong-bo. Phase transition and abnormal spallation in pure iron[J]. Explosion And Shock Waves, 2009, 29(6): 637-641. doi: 10.11883/1001-1455(2009)06-0637-05 |
[11] | ZHANG Lei, HU Shi-sheng, CHEN De-xing, ZHANG Shou-bao, YU Ze-qing, LIU Fei. Spall fracture properties of steel-fiber-reinforced concrete[J]. Explosion And Shock Waves, 2009, 29(2): 119-124. doi: 10.11883/1001-1455(2009)02-0119-06 |
[12] | XIONG Jun, ZHOU Hai-bing, LIU Wen-tao, ZHANG Shu-dao, SUN Jin-shan. Spallation of steel tube driven by sliding detonation[J]. Explosion And Shock Waves, 2008, 28(2): 105-109. doi: 10.11883/1001-1455(2008)02-0105-05 |
[13] | ZHANG Lei, HU Shi-sheng, CHEN De-xing, ZHANG Shou-bao, YU Ze-qing, LIU Fei. Spall characteristics of concrete materials[J]. Explosion And Shock Waves, 2008, 28(3): 193-199. doi: 10.11883/1001-1455(2008)03-0193-07 |
[14] | CHEN Yong-tao, LI Qing-zhong, HU Hai-bo. Phase transition and spalling behavior of metal with low transition stress under high pressure[J]. Explosion And Shock Waves, 2008, 28(6): 503-506. doi: 10.11883/1001-1455(2008)06-0503-04 |
[15] | WANG Yong-gang, HE Hong-liang. Effect of tensile strain rate on spall fracture in 20 steel[J]. Explosion And Shock Waves, 2007, 27(3): 193-197. doi: 10.11883/1001-1455(2007)03-0193-05 |
[16] | ZHANG Xin-hua, TANG Zhi-ping, XU Wei-wei, TANG Xiao-jun, ZHENG Hang. Experimental study on characteristics of shock-induced phase transition and spallation in FeMnNi alloy[J]. Explosion And Shock Waves, 2007, 27(2): 103-108. doi: 10.11883/1001-1455(2007)02-0103-06 |
[17] | JIANG Song-qing, LIU Wen-tao. Numerical modeling of spall fracture behavior in U-Nb alloys[J]. Explosion And Shock Waves, 2007, 27(6): 481-486. doi: 10.11883/1001-1455(2007)06-0481-06 |
[18] | XIE Shu-gang, FAN Chun-lei, CHEN Da-nian, WANG Huan-ran. Experimental and numerical studies on spall of OFHC[J]. Explosion And Shock Waves, 2006, 26(6): 532-536. doi: 10.11883/1001-1445(2006)06-0532-05 |
[19] | LI Xue-mei, JIN Xiao-gang, LI Da-hong. The spall characteristics of cylindrical steel tube under inward explosion loading[J]. Explosion And Shock Waves, 2005, 25(2): 107-111. doi: 10.11883/1001-1455(2005)02-0107-05 |
[20] | WANG Yong-gang, HE Hong-liang, CHEN Den-ping, WANG Li-li, JING Fu-qian. Comparison of different spall models for simulating spallation in ductile metals[J]. Explosion And Shock Waves, 2005, 25(5): 467-471. doi: 10.11883/1001-1455(2005)05-0467-05 |
1. | 宗周红,甘露,院素静,李明鸿,单玉麟,林津,夏梦涛,陈振健. 桥梁结构抗爆安全防护研究综述. 中国公路学报. 2024(05): 1-37 . ![]() | |
2. | 院素静,杨凯,刘泽瑞,宗周红. 近距离爆炸作用下RC桥墩毁伤模式及其轴力效应数值模拟. 东南大学学报(自然科学版). 2023(01): 76-85 . ![]() | |
3. | 马世鑫,纪杨子燚,钟明寿,李向东. 接触爆炸作用下混凝土墩体的易损性研究. 爆炸与冲击. 2023(07): 107-122 . ![]() | |
4. | Sujing Yuan,Yazhu Li,Zhouhong Zong,Minghong Li,Yajun Xia. A review on close-in blast performance of RC bridge columns. Journal of Traffic and Transportation Engineering(English Edition). 2023(04): 675-696 . ![]() | |
5. | 亓晓鹏,张杰,赵婷婷,王志勇,王志华. 考虑骨料级配的混凝土靶板接触爆炸破坏模式. 兵工学报. 2023(12): 3641-3653 . ![]() | |
6. | 杨程风,闫俊伯,刘彦,吕中杰,黄风雷. 接触爆炸载荷下波纹钢加固钢筋混凝土板毁伤特征分析. 北京理工大学学报. 2022(05): 453-462 . ![]() | |
7. | 魏久淇,李磊,王世合,张春晓,曹少华,高杰. 超高性能混凝土临空板接触爆炸破坏效应实验研究. 爆炸与冲击. 2022(04): 28-35 . ![]() | |
8. | 李圣童,汪维,梁仕发,桑琴扬,郑荣跃. 长持时爆炸冲击波荷载作用下梁板组合结构的动力响应. 爆炸与冲击. 2022(07): 138-149 . ![]() | |
9. | 于潇,周布奎,胡枫,张威,刘鹏清,姜厚文. 接触爆炸对BFRP筋-格栅增强混凝土板的破坏效应试验研究. 防护工程. 2020(04): 29-34 . ![]() | |
10. | 王辉明,刘飞,晏麓晖,汪剑辉,尚伟,吕林梅. 接触爆炸荷载对钢筋混凝土梁的局部毁伤效应. 爆炸与冲击. 2020(12): 37-45 . ![]() | |
11. | 何翔,任新见,陈力,杨建超,孙桂娟,王幸. 结构中爆炸泄入坑道工程内部空气冲击波传播试验研究. 防护工程. 2019(02): 1-6 . ![]() | |
12. | 何翔,任新见,陈力,杨建超,孙桂娟,王幸. 结构中爆炸泄入坑道内部空气冲击波超压工程计算方法. 防护工程. 2019(03): 20-25 . ![]() | |
13. | 刘绍鎏,孙惠香,张悦,牛欢,王博,焦道华,于斌. 爆炸载荷作用下临界震塌爆距公式研究. 爆破. 2017(04): 91-95 . ![]() |