Zhong Qiang, Hou Hailiang, Zhu Xi, Li Dian. Numerical analysis of penetration resistance of ceramic/fluid cabin composite structure[J]. Explosion And Shock Waves, 2017, 37(3): 510-519. doi: 10.11883/1001-1455(2017)03-0510-10
Citation: Zhong Qiang, Hou Hailiang, Zhu Xi, Li Dian. Numerical analysis of penetration resistance of ceramic/fluid cabin composite structure[J]. Explosion And Shock Waves, 2017, 37(3): 510-519. doi: 10.11883/1001-1455(2017)03-0510-10

Numerical analysis of penetration resistance of ceramic/fluid cabin composite structure

doi: 10.11883/1001-1455(2017)03-0510-10
  • Received Date: 2015-08-14
  • Rev Recd Date: 2015-11-18
  • Publish Date: 2017-05-25
  • To study the mechanism behind the penetration resistance capability of the ceramic/fluid cabin composite structure, numerical simulation was carried out using LS-DYNA to represent the structure's failure process and modes under the impact of the projectile, and results were obtained that agree well with those from the experiment. The results show that the shockwave generated at the impact point of the structure propagated forward spherically, and bounced and oscillated back and forth in the structure. Cavity was generated in the water and constantly grew, and there was an area of high pressure in front of the projectile when the projectile was moving in the water. The projectile mainly exhibited coarse and erosive damage, and the damage mainly occurred in the process of the projectile penetrating the ceramic and the front plate at low velocities and in the water at high velocities, eventually forming approximately bake-shaped serious deformation. The front and back plates mainly suffered local failure and overall deformation, while petal-shaped cracking occurred in the back plate under high-velocity impact.
  • [1]
    朱锡, 张振华, 刘润泉, 等.水面舰艇舷侧防雷舱结构模型抗爆试验研究[J].爆炸与冲击, 2004, 24(2):133-139. doi: 10.3321/j.issn:1001-1455.2004.02.006

    Zhu Xi, Zhang Zhenhua, Liu Runquan, et al.Experimental study on the explosion resistance of cabin near shipboard of surface warship subjected to underwater contact explosion[J].Explosion and Shock Waves, 2004, 24(2):133-139. doi: 10.3321/j.issn:1001-1455.2004.02.006
    [2]
    徐定海, 盖京波, 王善, 等.防护模型在接触爆炸作用下的破坏[J].爆炸与冲击, 2008, 28(5):476-480. doi: 10.3321/j.issn:1001-1455.2008.05.016

    Xu Dinghai, Gai Jingbo, Wang Shan, et al.Deformation and failure of layered defense models subjected to contact explosive load[J].Explosion and Shock Waves, 2008, 28(5):476-480. doi: 10.3321/j.issn:1001-1455.2008.05.016
    [3]
    卢芳云, 李翔宇, 林玉亮.战斗部结构与原理[M].北京:科学出版社, 2009.
    [4]
    沈哲, 肖素娟, 南长江等.鱼雷战斗部与引信技术[M].北京:国防工业出版社, 2009.
    [5]
    段卓平, 朱艳丽, 张连生.爆炸成型弹丸对Al2O3装甲陶瓷材料的侵彻实验研究[J].爆炸与冲击, 2006, 26(6):505-509. doi: 10.3321/j.issn:1001-1455.2006.06.005

    Duan Zhuoping, Zhu Yanli, Zhang Liansheng.DOP experimental study on EFP penetrating Al2O3 armor ceramic[J].Explosion and Shock Waves, 2006, 26(6):505-509. doi: 10.3321/j.issn:1001-1455.2006.06.005
    [6]
    李金柱, 张连生, 黄风雷.EFP侵彻陶瓷/金属复合靶实验运动网格法模拟[J].北京理工大学学报, 2012, 32(10):1004-1008. doi: 10.3969/j.issn.1001-0645.2012.10.002

    Li Jinzhu, Zhang Liansheng, Huang Fenglei.Simulation of EFP penetrating into ceramic/steel composite target using moving mesh/method[J].Transactions of Beijing Institute of Technology, 2012, 32(10):1004-1008. doi: 10.3969/j.issn.1001-0645.2012.10.002
    [7]
    Fellows N A, Barton P C.Development of impact model for ceramic-faced semi-infinite armour[J].International Journal of Impact Engineering, 1999, 22(8):793-881. doi: 10.1016/S0734-743X(99)00017-2
    [8]
    侯海量, 朱锡, 李伟.轻型陶瓷/金属复合装甲抗弹机理研究[J].兵工学报, 2013, 34(1):106-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bgxb201301019

    Hou Hailiang, Zhu Xi, Li Wei.Investigation on bullet proof mechanism of light ceramic/steel composite armor[J].Journal of China Ordnance, 2013, 34(1):106-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bgxb201301019
    [9]
    Lecysyn N, Bony-Dandrieux A, Aprin L, et al.Experimental study of hydraulic ram effects on a liquid storage tank:Analysis of overpressure and cavitation induced by a high-speed projectile[J].Journal of Hazardous Materials, 2010, 178(1/2/3):635-643. http://www.sciencedirect.com/science/article/pii/S0304389410001688
    [10]
    Disimile P J, Toy N, Swanson LA.A large-scale shadowgraph technique applied to hydrodynamic ram[J].Journal of Flow Visualization and Image Processing, 2009, 16(4):1-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e4c766726c6f5629d9732baabe2cf211
    [11]
    徐双喜.大型水面舰船舷侧复合多层防护结构研究[D].武汉: 武汉理工大学, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1750730
    [12]
    李典, 朱锡, 侯海量.高速杆式弹侵彻下蓄水结构防护效能数值分析[J].海军工程大学学报, 2015, 4(21):21-25. http://d.old.wanfangdata.com.cn/Periodical/hjgcdxxb201504005

    Li Dian, Zhu Xi, Hou Hailiang.Numerical analysis of protective efficacy of water-filled structure subjected to high velocity long-rod projectile penetration[J].Journal of Naval University of Engineering, 2015, 4(21):21-25. http://d.old.wanfangdata.com.cn/Periodical/hjgcdxxb201504005
    [13]
    尹建平.多爆炸成型弹丸战斗部技术[M].北京:国防工业出版社, 2012.
    [14]
    Mcintosh G.The Johnson-Holmquist model as used in LS-DYNA 2D[R].America: Defense Technical Information Center, 1998.
    [15]
    沈晓乐, 朱锡, 侯海量, 等.高速破片入水镦粗变形及侵彻特性有限元分析[J].舰船科学技术, 2012, 34(7):25-29. doi: 10.3404/j.issn.1672-7649.2012.07.005

    Shen Xiaole, Zhu Xi, Hou Hailiang, et al.Finite element analysis of underwater high velocity fragment mushrooming and penetration properties[J].Ship Science and Technology, 2012, 34(7):25-29. doi: 10.3404/j.issn.1672-7649.2012.07.005
  • Cited by

    Periodical cited type(11)

    1. 赵著杰,侯海量,吴晓伟,李永清,李典,姜安邦. 冲击载荷下蓄液结构动响应及防护机理的研究进展. 爆炸与冲击. 2024(05): 17-49 . 本站查看
    2. Na Feng,Kun Ma,Chunlin Chen,Lixin Yin,Mingrui Li,Zhihua Nie,Gang Zhou,Chengwen Tan. Study of the axial density/impedance gradient composite long rod hypervelocity penetration into a four-layer Q345 target. Defence Technology. 2023(10): 314-329 .
    3. 杨秋足,张玉林,杨扬,徐绯,王计真. 水锤效应影响因素及防护结构的数值研究. 航空工程进展. 2022(03): 40-49 .
    4. 高圣智,侯海量,白雪飞,李永清,李典. 高速弹体侵彻下充液结构的破坏特性及防护技术研究进展. 舰船科学技术. 2021(01): 1-10 .
    5. 施兴华,许文强,袁海,张婧. 舰船复合材料防护结构的选择与优化. 舰船科学技术. 2020(07): 36-40 .
    6. 金键,朱锡,侯海量,李典,陈鹏宇,高圣智. 大型舰船在水下接触爆炸下的毁伤与防护研究综述. 爆炸与冲击. 2020(11): 15-39 . 本站查看
    7. 马丽英,李向东,周兰伟,蓝肖颖,宫小泽,姚志军. 高速破片撞击充液容器时容器壁面的损伤. 爆炸与冲击. 2019(02): 59-70 . 本站查看
    8. 高华,熊超,殷军辉,邓辉咏. 多层异质复合结构的动力学响应及抗侵彻性能. 复合材料学报. 2019(05): 1284-1294 .
    9. 纪杨子燚,李向东,周兰伟,蓝肖颖. 高速侵彻体撞击充液容器形成的液压水锤效应研究进展. 振动与冲击. 2019(19): 242-252 .
    10. 胡年明,陈长海,朱锡,侯海量. 陶瓷与芳纶层合板叠层结构抗侵彻性能试验研究. 兵工学报. 2018(05): 976-982 .
    11. 孔祥韶,王旭阳,徐敬博,郑成,徐双喜,袁天,吴卫国. 复合防护液舱抗爆效能对比试验研究. 兵工学报. 2018(12): 2438-2449 .

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(6)

    Article Metrics

    Article views (4335) PDF downloads(666) Cited by(17)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return