Leng Zhendong, Lu Wenbo, Fan Yong, Chen Ming, Yan Peng. Explosion energy distribution by side initiation and its effects on rock fragmentation[J]. Explosion And Shock Waves, 2017, 37(4): 661-669. doi: 10.11883/1001-1455(2017)04-0661-09
Citation: Leng Zhendong, Lu Wenbo, Fan Yong, Chen Ming, Yan Peng. Explosion energy distribution by side initiation and its effects on rock fragmentation[J]. Explosion And Shock Waves, 2017, 37(4): 661-669. doi: 10.11883/1001-1455(2017)04-0661-09

Explosion energy distribution by side initiation and its effects on rock fragmentation

doi: 10.11883/1001-1455(2017)04-0661-09
  • Received Date: 2015-09-28
  • Rev Recd Date: 2016-03-21
  • Publish Date: 2017-07-25
  • To improve the energy utilization and fragmentation effect in rock blasting, the explosion energy partitions of end initiation and continuous side initiation were analyzed. In addition, field blasting tests were conducted in Xiangshuigou Quarry, and the results show significant differences in the partition of shock and gas energy between the two initiation methods. The effective energy utilization of these two initiation methods in different rocks varies considerably. On this basis, a selection principle of initiation methods for rocks with different intensities was put forward. The continuous side initiation with a detonating cord is advantageous in soft and fissured rocks and contour blasting, while blasting for graded material in hard rock, the end initiation is recommended instead of the side initiation.
  • [1]
    Liang K, Zhang J, Liu C. Detonation propagation characteristics of superposition explosive materials[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2003, 18(1):80-82. doi: 10.1007/BF02835096
    [2]
    Lownds C M, Du Plessis M P. Behaviour of explosives in intermediate-diameter boreholes[J]. Quarry Management, 1984, 11:799-804. https://www.sciencedirect.com/science/article/pii/S1365160916300752
    [3]
    Duvall W I, Pugliese J M. Comparison between end and axial methods of detonating an explosive in granite[M]. Pittsburgh: US Department of the Interior, Bureau of Mines, 1965.
    [4]
    卢文波, 陶振宇.预裂爆破中炮孔压力变化历程的理论分析[J].爆炸与冲击, 1994, 14(2):140-147. http://www.bzycj.cn/article/id/10619

    Lu Wenbo, Tao Zhenyu. Theoretical analysis of the pressure-variation in borehole for pre-splitting explosion[J]. Explosion and Shock Waves, 1994, 14(2):140-146. http://www.bzycj.cn/article/id/10619
    [5]
    冷振东, 卢文波, 陈明, 等.岩石钻孔爆破粉碎区计算模型的改进[J].爆炸与冲击, 2015, 35(1):101-107. doi: 10.11883/1001-1455(2015)01-0101-07

    Leng Zhendong, Lu Wenbo, Chen Ming, et al. Improved calculation model for the size of crushed zone around blasthole[J]. Explosion and Shock Waves, 2015, 35(1):101-107. doi: 10.11883/1001-1455(2015)01-0101-07
    [6]
    颜事龙, 陈叶青.岩石中集中装药爆炸能量分布的计算[J].爆破器材, 1993, 77(6):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-BPQC199306000.htm

    Yan Shilong, Chen Yeqing. Distribution of the explosive energy of concentrated charge in rock blasting[J]. Explosive Materials, 1993, 77(6):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-BPQC199306000.htm
    [7]
    宗琦, 杨吕俊.岩石中爆炸冲击波能量分布规律初探[J].爆破, 1999, 16(2):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-BOPO902.000.htm

    Zong Qi, Yang Lüjun. Shock energy distribution of column charge in rock[J]. Blasting, 1999, 16(2):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-BOPO902.000.htm
    [8]
    Kurokawa K, Hashimoto K, Tabuchi M. The experimental study on the effect of performances of explosives on rock fracture[C]//Proceedings of the Fourth International Symposium on Rock Fragmentation by Blasting, 1993: 379-386.
    [9]
    Brinkman J R. Separating shock wave and gas expansion breakage mechanisms[C]//Proceedings of the Second International Symposium on Rock Fragmentation by Blasting, 1989: 6-15.
    [10]
    Hustrulid W A. Blasting principles for open pit mining: Theoretical foundations[M]. Rotterdam: Balkema, 1999:205-207.
    [11]
    Cook M A. The science of industrial explosives[M]. Salt Lake City: IRECO Chemicals, 1974:120-123.
    [12]
    Long Y, Zhong M S, Xie Q M, et al. Influence of initiation point position on fragmentation by blasting in iron ore[C]//Proceedings of the Tenth International Symposium on Rock Fragmentation by Blasting, 2012: 111-116.
    [13]
    郑炳旭.经山寺铁矿优化开采综合爆破技术[J].岩石力学与工程学报, 2012, 31(8):1530-1536. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201208004.htm

    Zheng Bingxu. Multiple blasting techniques for exploitation optimizion of jinshan temple iron mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8):1530-1536. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201208004.htm
    [14]
    邢光武, 郑炳旭.采石场爆破块度分区及块度预测研究[J].地下空间与工程学报, 2009, 5(6):1258-1261. http://d.old.wanfangdata.com.cn/Periodical/dxkj200906036

    Xing Guangwu, Zheng Bingxu. Study on prediction of block zoning and block size in quarry blasting[J]. Chinese Journal of Underground Space and Engineering, 2009, 5(6):1258-1261. http://d.old.wanfangdata.com.cn/Periodical/dxkj200906036
    [15]
    Junk N M. Overburden blasting takes on new dimensions[J]. Coal Age, 1972, 77(1):92-96.
    [16]
    Singh S P. Mechanism of tracer blasting[J]. Geotechnical and Geological Engineering, 1996, 14(1):41-50.
    [17]
    Lin Shaochi. Cylindrical shock waves produced by instantaneous energy release[J]. Journal of Applied Physics, 1954, 25(1):54-57. doi: 10.1063/1.1721520
    [18]
    Lownds C M. The strength of explosives[C]//Proceedings of the International Conference of the South African Institute of Mining and Metallurgy: Planning and Operation of Open-Pit and Strip Mines, 1986: 151159.
    [19]
    许金余, 刘石.大理岩冲击加载试验碎块的分形特征分析[J].岩土力学, 2012, 33(11):3225-3229. http://d.old.wanfangdata.com.cn/Periodical/ytlx201211005

    Xu Jinyu, Liu Shi. Research on fractal characteristics of marble fragments subjected to impact loading[J]. Rock and Soil Mechanics, 2012, 33(11):3225-3229. http://d.old.wanfangdata.com.cn/Periodical/ytlx201211005
    [20]
    周传波.基于回归分析理论的爆破块度预测模型研究[J].爆破, 2003, 20(4):1-4. http://d.old.wanfangdata.com.cn/Periodical/bp200304001

    Zhou Chuanbo. Model of predicting the blasting fragmentation based on regressional analysis[J]. Blasting, 2003, 20(4):1-4. http://d.old.wanfangdata.com.cn/Periodical/bp200304001
  • Cited by

    Periodical cited type(16)

    1. 谭铭. 炸药性能对爆破地震波传播与能量衰减规律影响研究. 中国矿业. 2024(01): 193-199 .
    2. 王洪刚,贾永胜,余浩天,罗鹏,黄炳林,周俊汝. 基于根底控制的深孔台阶爆破超深优选方法. 爆破. 2024(01): 44-50 .
    3. 冷振东,高启栋,卢文波,陈明,周桂松,范勇. 岩石钻孔爆破能量调控理论与应用技术研究进展. 金属矿山. 2023(05): 64-76 .
    4. 金鑫,高佳明,苏宏伟,陈化南,毕京九. 露天矿深孔台阶爆破间隔装药爆破试验研究. 爆破. 2023(02): 42-47 .
    5. 刘万通,徐振洋,张久洋,王雪松,刘鑫. 孔底间隔介质对岩体损伤规律研究. 有色金属工程. 2023(10): 82-94 .
    6. 曹俊. 高台阶金属矿山爆破研究与应用. 中国矿山工程. 2022(01): 41-44+76 .
    7. 周春国,王荣富,刘兴堂,封磊,刘刚. 地下厂房岩壁梁爆破松弛试验及稳定性影响研究. 岩土工程技术. 2022(06): 502-506 .
    8. 周海孝,高启栋,王亚琼,冷振东,陈明. 水电站扩机工程中预裂孔与主爆孔诱发的爆破振动比较分析. 爆破. 2021(02): 58-66 .
    9. 雷振,张智宇,黄永辉,周继国,白莹. 岩石爆破破碎能耗随抵抗线的变化规律. 爆炸与冲击. 2021(07): 151-160 . 本站查看
    10. 高启栋,靳军,王亚琼,卢文波,冷振东,陈明. 孔内起爆位置对爆破振动场分布的影响作用规律. 爆炸与冲击. 2021(10): 138-152 . 本站查看
    11. 郭德勇,张超,朱同功,李广涛. 深孔聚能爆破起爆位置对煤层致裂增透的影响. 煤炭学报. 2021(S1): 302-311 .
    12. 杨仁树,李炜煜,杨国梁,马鑫民. 炸药类型对富铁矿爆破效果影响的试验研究. 爆炸与冲击. 2020(06): 96-107 . 本站查看
    13. 高启栋,卢文波,冷振东,王亚琼,孙鹏昌,陈明. 岩石爆破中孔内起爆位置对爆炸能量传输的调控作用研究. 岩土工程学报. 2020(11): 2050-2058 .
    14. 于霖,盛希,刘强,赵继亮,刘金峰. 导爆索组件一体化防热方案设计及验证. 兵器装备工程学报. 2019(01): 39-43 .
    15. 崔新男,汪旭光,张小军,陈志远. 基于数字图像处理技术的爆生气体膨胀规律研究. 有色金属(矿山部分). 2019(04): 119-123 .
    16. 冷振东,范勇,卢文波,高启栋,周俊汝. 孔内双点起爆条件下的爆炸能量传输与破岩效果分析. 岩石力学与工程学报. 2019(12): 2451-2462 .

    Other cited types(11)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (4614) PDF downloads(362) Cited by(27)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return