Citation: | Xu Qiang, Cao Yang, Chen Jianyun. Antiknock performance of an overflow dam subjected to contact explosion[J]. Explosion And Shock Waves, 2017, 37(4): 677-684. doi: 10.11883/1001-1455(2017)04-0677-08 |
[1] |
丁阳, 方磊, 李忠献, 等.防恐建筑结构抗爆防护分类设防标准研究[J].建筑结构学报, 2013, 34(4):57-64. http://d.old.wanfangdata.com.cn/Periodical/zhzyfdc201633065
Ding Yang, Fang Lei, Li Zhongxian, et al. Research on categorized explosion protection criterion of anti-terrorism building structures[J]. Journal of Building Structures, 2013, 34(4):57-64. http://d.old.wanfangdata.com.cn/Periodical/zhzyfdc201633065
|
[2] |
Georgin J F, Reynouard J M. Modeling of structures subjected to impact: Concrete behaviour under high strain rate[J]. Cement and Concrete Composites, 2003, 25(1):131-143. doi: 10.1016/S0958-9465(01)00060-9
|
[3] |
Zhang Q, Lin D C, Bai C H, et al. Correlations of blast damage to ground surface targets with explosion seismic effect[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(7):519-525. doi: 10.1016/j.soildyn.2004.03.003
|
[4] |
Zhao C F, Chen J Y. Damage mechanism and mode of square reinforced concrete slab subjected to blast loading[J]. Theoretical and Applied Fracture Mechanics, 2013, 63/64(1):54-62. https://www.sciencedirect.com/science/article/pii/S0167844213000372
|
[5] |
Zhao C F, Chen J Y, Wang Y, et al. Damage mechanism and response of reinforced concrete containment structure under internal blast loading[J]. Theoretical and Applied Fracture Mechanics, 2012, 61(1):12-20. https://www.sciencedirect.com/science/article/pii/S0167844212000638
|
[6] |
李鸿波, 张爱华, 陈云敏.爆炸冲击荷载作用下重力坝三维各向异性脆性动力损伤有限元分析[J].岩石力学与工程学报, 2006, 25(8):1598-1605. doi: 10.3321/j.issn:1000-6915.2006.08.012
Li Hongbo, Zhang Aihua, Chen Yunmin. 3d finite element analysis of anisotropic brittle dynamic damage in gravity dam under blast-impact load[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(8):1598-1605. doi: 10.3321/j.issn:1000-6915.2006.08.012
|
[7] |
薛新华, 李鹏.爆炸荷载作用下拱坝动力响应分析[J].水利学报, 2015, 46(增刊1):107-110. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGTY201507001426.htm
Xue Xinhua, Li Peng. Dynamic response analysis of arch dam under blast load[J]. Journal of Hydraulic Engineering, 2015, 46(Suppl 1);107-110. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGTY201507001426.htm
|
[8] |
徐俊祥, 刘西拉.水中爆炸冲击下混凝土坝动力响应的全耦合分析[J].上海交通大学学报, 2008, 42(6):1001-1004. doi: 10.3321/j.issn:1006-2467.2008.06.032
Xu Junxiang, Liu Xila. Full coupled simulation of concrete dams subjected to underwater explosion[J]. Journal of Shanghai Jiaotong University, 2008, 42(6):1001-1004. doi: 10.3321/j.issn:1006-2467.2008.06.032
|
[9] |
Yu T T. Dynamical response simulation of concrete dam subjected to underwater contact explosion load[C]//2009 WRI World Congress on Computer Science and Information Engineering. Los Angeles, California, 2009: 769-774.
|
[10] |
张社荣, 王高辉.混凝土重力坝抗爆性能及抗爆措施研究[J].水利学报, 2012, 43(10):1202-1213. http://cdmd.cnki.com.cn/Article/CDMD-10056-1015039423.htm
Zhang Sherong, Wang Gaohui. Study on the antiknock performance and measures of concrete gravity dam[J]. Journal of Hydraulic Engineering, 2012, 43(10):1202-1213. http://cdmd.cnki.com.cn/Article/CDMD-10056-1015039423.htm
|
[11] |
张社荣, 王高辉.浅水爆炸冲击荷载下高拱坝抗爆性能分析[J].天津大学学报, 2013, 46(4):315-321. http://d.old.wanfangdata.com.cn/Periodical/tianjdxxb201304005
Zhang Sherong, Wang Gaohui. Antiknock performance of high arch dam subjected to shallow water explosion[J]. Journal of Tianjin University, 2013, 46(4):315-321. http://d.old.wanfangdata.com.cn/Periodical/tianjdxxb201304005
|
[12] |
Zhang S R, Wang G H, Yu X R. Seismic cracking analysis of concrete gravity dams with initial cracks using the extended finite element method[J]. Engineering Structures, 2013, 56(6):528-543. https://www.sciencedirect.com/science/article/pii/S0141029613002605
|
[13] |
张社荣, 孔源, 王高辉, 等.混凝土重力坝水下接触爆炸下的毁伤特性分析[J].水利学报, 2014, 45(9):1057-1065. http://d.old.wanfangdata.com.cn/Periodical/slxb201409006
Zhang Shenrong, Kong Yuan, Wang Gaohui, et al. Damage characteristic analysis of concrete gravity dams subjected to underwater contact explosion[J]. Journal of Hydraulic Engineering, 2014, 45(9):1057-1065. http://d.old.wanfangdata.com.cn/Periodical/slxb201409006
|
[14] |
李本平.制导炸弹连续打击下混凝土重力坝的破坏效应[J].爆炸与冲击, 2010, 30(2):220-224. doi: 10.11883/1001-1455(2010)02-0220-05
Li Benping. Damage effect of a concrete gravity dam under continuous attacks of guided bombs[J]. Explosion and Shock Waves, 2010, 30(2):220-224. doi: 10.11883/1001-1455(2010)02-0220-05
|
[15] |
张社荣, 杨明, 王高辉.水下爆炸冲击下重力拱坝的破坏特性[J].水电能源科学, 2014, 32(7):69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201407017.htm
Zhang Sherong, Yang ming, Wang Gaohui. Failure characteristics of gravity arch dam subjected to underwater explosion[J]. Water Resources and Power, 2014, 32(7):69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201407017.htm
|
[16] |
陆路, 李昕, 周晶.水下核爆作用下混凝土重力坝模型破坏试验[J].大连理工大学学报, 2011, 51(6):854-860. http://cdmd.cnki.com.cn/Article/CDMD-10141-1013198498.htm
Lu Lu, Li Xin, Zhou Jing. Destructive tests of concrete gravity dam underwater nuclear explosion[J]. Journal of Dalian University of Technology, 2011, 51(6):854-860. http://cdmd.cnki.com.cn/Article/CDMD-10141-1013198498.htm
|
[17] |
Malvar L J, Ross C A. A review of strain rate effects for concrete in tension[J]. ACI Materials Journal, 1998, 95(6):735-739. https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&ID=418
|
[18] |
Bischoff P H, Perry S H. Compressive behaviour of concrete at high strain rates[J]. Materials and Structures, 1991, 24(6):425-450. doi: 10.1007/BF02472016
|
[19] |
Wang W, Zhang D, Lu F, et al. Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading[J]. International Journal of Impact Engineering, 2012, 49(2):158-164. https://www.sciencedirect.com/science/article/pii/S0734743X12000759
|
[20] |
匡志平, 袁训康.RHT混凝土本构模型强度参数分析与模拟[J].力学季刊, 2012, 33(1):158-163. doi: 10.3969/j.issn.0254-0053.2012.01.023
Kuang Zhiping, Yuan Xunkang. The analysis and simulation for the strength parameters[J]. Chinese Quarterly of Mechanics, 2012, 33(1):158-163. doi: 10.3969/j.issn.0254-0053.2012.01.023
|
[21] |
Tu Z G, Lu Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations[J]. International Journal of Impact Engineering, 2009, 36(1):132-146. doi: 10.1016/j.ijimpeng.2007.12.010
|
[22] |
Shin Y S, Chisum J E. Modeling and simulation of underwater shock problems using a coupled Lagrangian-Eulerian analysis approach[J]. Shock and Vibration, 1997, 4(1):1-10.
|
[23] |
Mair H U. Hydrocodes for structural response to underwater explosions[J]. Shock and Vibration, 1999, 6(2):81. doi: 10.1155/1999/587105
|
[24] |
Van der Veen W A. Simulation of a compartmented airbag deployment using an explicit, coupled Euler/Lagrange method with adaptive Euler domains[A]. NAFEMS, Florida, 2003.
|
[25] |
Mair H U. Hydrocode methodologies for underwater explosion structure/medium interaction[C]//Proceeding of the 66th Shock and Vibration Symposium. Virginia, 1995, 2: 227-248.
|