Citation: | Wu Xutao, Liao Li. Numerical simulation of stress wave attenuation in brittle material and spalling experiment design[J]. Explosion And Shock Waves, 2017, 37(4): 705-711. doi: 10.11883/1001-1455(2017)04-0705-07 |
[1] |
王礼立.应力波基础[M].第2版.北京:国防工业出版社, 2005.
|
[2] |
Rinehart J S. Some quantitative data bearing on the scabbing of metals under explosive attack[J]. Journal of Applied Physics, 1951, 22(5):555-560. doi: 10.1063/1.1700005
|
[3] |
Klepaczko J R, Brara A. An experimental method for dynamic tensile testing of concrete by spalling[J]. International Journal of Impact Engineering, 2001, 25(4):387-409. doi: 10.1016/S0734-743X(00)00050-6
|
[4] |
Díaz-Rubio F G, Pérez J R, Gálvez V S. The spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics[J]. International Journal of Impact Engineering, 2002, 27(2):161-177. doi: 10.1016/S0734-743X(01)00039-2
|
[5] |
胡时胜, 张磊, 武海军, 等.混凝土材料层裂强度的实验研究[J].工程力学, 2004, 21(4):128-132. doi: 10.3969/j.issn.1000-4750.2004.04.023
Hu Shisheng, Zhang Lei, Wu Haijun, et al. Experimental study on spalling strength of concrete[J]. Engineering Mechanics, 2004, 21(4):128-132. doi: 10.3969/j.issn.1000-4750.2004.04.023
|
[6] |
Zhu J, Sun C, Qian Z, et al. The spalling strength of ultra-fiber reinforced cement mortar[J]. Engineering Failure Analysis, 2011, 18(7):1808-1817. doi: 10.1016/j.engfailanal.2011.05.001
|
[7] |
Rong Z, Sun W. Experimental and numerical investigation on the dynamic tensile behavior of ultra-high performance cement based composites[J]. Construction & Building Materials, 2012, 31(6):168-173. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7229a4cff4af75ed8bc9dc2039905eae
|
[8] |
陈柏生, 肖岩, 黄政宇, 等.钢纤维活性粉末混凝土动态层裂强度试验研究[J].湖南大学学报(自然科学版), 2009, 36(7):12-16. http://d.old.wanfangdata.com.cn/Periodical/hndxxb200907003
Chen Baisheng, Xiao Yan, Huang Zhengyu, et al. Experimental study on the spalling strength of fiber reactive powder concrete[J]. Journal of Hunan University(Natural Sciences), 2009, 36(7):12-16. http://d.old.wanfangdata.com.cn/Periodical/hndxxb200907003
|
[9] |
Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjected to large strains high strain rates, and high pressure[C]// Jackson N, Dickert S. The 14th International Symposium on Ballistics. USA: American Defense Prepareness Association, 1993: 591-600.
|
[1] | LI Guoqiang, MA Gang, GAO Songtao, GUO Dongcai, ZHANG Jiayin. Numerical study on dynamic response and spall damage of filter concrete under impact load[J]. Explosion And Shock Waves, 2023, 43(2): 023201. doi: 10.11883/bzycj-2022-0189 |
[2] | LIU Jun, SUN Zhiyuan, ZHANG Fengguo, WANG Pei. Simulation study of the recompression of metal spallation zone[J]. Explosion And Shock Waves, 2022, 42(3): 033101. doi: 10.11883/bzycj-2021-0262 |
[3] | HE Nianfeng, REN Guowu, CHEN Yongtao, GUO Zhaoliang. Numerical simulation on spallation and fragmentation of tin under explosive loading[J]. Explosion And Shock Waves, 2019, 39(4): 042101. doi: 10.11883/bzycj-2017-0354 |
[4] | SUN Qiang, LI Xuedong, YAO Tengfei, GAO Chun. Experimental study on crack propagation of brittle materials based on DIC under explosive loading[J]. Explosion And Shock Waves, 2019, 39(10): 103102. doi: 10.11883/bzycj-2018-0308 |
[5] | DING Yuanyuan, ZHANG Zhen, LAI Huawei, WANG Yonggang. A Lagrangian inverse analysis technique for studying dynamic mechanical properites of brittle materials based on digital image correlation[J]. Explosion And Shock Waves, 2018, 38(6): 1310-1316. doi: 10.11883/bzycj-2018-0049 |
[6] | ZHANG Shiwen, LONG Jianhua, JIA Hongzhi, LIU Cangli. Influence of cylindrical shell on spatial distribution of pressure during propagation of divergent shockwave[J]. Explosion And Shock Waves, 2018, 38(2): 345-352. doi: 10.11883/bzycj-2016-0214 |
[7] | Yi Hongsheng, Xu Songlin, Shan Junfang, Zhang Ming. Fracture characteristics of brittle particles at different loading velocities[J]. Explosion And Shock Waves, 2017, 37(5): 913-922. doi: 10.11883/1001-1455(2017)05-0913-10 |
[8] | Hu Shi-sheng, Wang Li-li, Song Li, Zhang Lei. Review of the development of Hopkinson pressure bar technique in China[J]. Explosion And Shock Waves, 2014, 34(6): 641-657. doi: 10.11883/1001-1455(2014)06-0641-17 |
[9] | Duan Zhong, Zhou Feng-hua. Effects of defects on fragmentation processes of brittle materials[J]. Explosion And Shock Waves, 2013, 33(1): 11-20. doi: 10.11883/1001-1455(2013)01-0011-10 |
[10] | YAN Cheng, OU Zhuo-cheng, DUAN Zhuo-ping, HUANG Feng-lei. Strain-rateeffectsondynamicstrengthofbrittlematerials[J]. Explosion And Shock Waves, 2011, 31(4): 423-427. doi: 10.11883/1001-1455(2011)04-0423-05 |
[11] | ZHAO Kai, WANG Xiao-jun, LIU Fei, LUO Wen-chao. Propagationofstresswaveinporousmaterial[J]. Explosion And Shock Waves, 2011, 31(1): 107-112. doi: 10.11883/1001-1455(2011)01-0107-06 |
[12] | LIU Ai-wen, YU Yan-xiang, FU Chang-hua, CHEN Kun, ZHAO Ji-sheng, ZHOU Zheng-hua, WANG Wei, . Attenuationcharacteristicsandtopographiceffectof ascientificexplosionwith50texplosive[J]. Explosion And Shock Waves, 2010, 30(1): 21-26. doi: 10.11883/1001-1455(2010)01-0021-06 |
[13] | ZHANG Lei, HU Shi-sheng, CHEN De-xing, ZHANG Shou-bao, YU Ze-qing, LIU Fei. Spall fracture properties of steel-fiber-reinforced concrete[J]. Explosion And Shock Waves, 2009, 29(2): 119-124. doi: 10.11883/1001-1455(2009)02-0119-06 |
[14] | CHEN Yong-tao, TANG Xiao-jun, LI Qing-zhong, HU Hai-bo, XU Yong-bo. Phase transition and abnormal spallation in pure iron[J]. Explosion And Shock Waves, 2009, 29(6): 637-641. doi: 10.11883/1001-1455(2009)06-0637-05 |
[15] | ZHOU Feng-hua, WANG Yong-gang. Factors controlling sizes of brittle fragments due to impact loadings[J]. Explosion And Shock Waves, 2008, 28(4): 298-303. doi: 10.11883/1001-1455(2008)04-0298-06 |
[16] | ZHAO Ji-bo, TAN Duo-wang, LI Jin-he, ZENG Hua-long, ZHANG Yuan-ping. Axial pressure damping of cylindrical TNT charges in the near underwater-explosion field[J]. Explosion And Shock Waves, 2008, 28(6): 539-543. doi: 10.11883/1001-1455(2008)06-0539-05 |
[17] | ZHANG Lei, HU Shi-sheng, CHEN De-xing, ZHANG Shou-bao, YU Ze-qing, LIU Fei. Spall characteristics of concrete materials[J]. Explosion And Shock Waves, 2008, 28(3): 193-199. doi: 10.11883/1001-1455(2008)03-0193-07 |
[18] | ZHANG Xin-hua, TANG Zhi-ping, XU Wei-wei, TANG Xiao-jun, ZHENG Hang. Experimental study on characteristics of shock-induced phase transition and spallation in FeMnNi alloy[J]. Explosion And Shock Waves, 2007, 27(2): 103-108. doi: 10.11883/1001-1455(2007)02-0103-06 |
[19] | JIANG Song-qing, LIU Wen-tao. Numerical modeling of spall fracture behavior in U-Nb alloys[J]. Explosion And Shock Waves, 2007, 27(6): 481-486. doi: 10.11883/1001-1455(2007)06-0481-06 |
[20] | TANG Xiao-jun, HU Hai-bo, LI Qing-zhong, ZHANG Xing-hua, TANG Zhi-ping, HU Ba-yi, TANG Tie-gang. Experimental studies on shock-induced phase transition in HR2 and other Fe-based materials[J]. Explosion And Shock Waves, 2006, 26(2): 115-120. doi: 10.11883/1001-1455(2006)02-0115-06 |
1. | 高子涛,马泽瑞,汪书敏,王志亮,尚晓梓,毕云飞,华正宇,缪逢晨. 花岗岩中应力波传播试验与数值模拟分析. 矿业工程研究. 2024(03): 29-35 . ![]() | |
2. | 李国强,马钢,高松涛,郭栋才,张佳寅. 冲击荷载作用下滤波混凝土的动态响应与层裂损伤数值研究. 爆炸与冲击. 2023(02): 47-61 . ![]() | |
3. | 范观盛,黄靥欢,刘春,乐天呈. 基于MatDEM的岩石应力波传播与衰减特性敏感性分析. 高校地质学报. 2023(03): 479-486 . ![]() | |
4. | 常聚才,齐潮,殷志强,史文豹,高翔. 动载作用下全锚锚固体应力波传播及破坏特征. 煤炭学报. 2023(05): 1996-2007 . ![]() | |
5. | 邹德波,赵铮. 冲击强度对爆炸切割脆性材料的影响研究. 兵器装备工程学报. 2021(08): 100-105 . ![]() | |
6. | 俞鑫炉,付应乾,董新龙,周风华,宁建国,徐纪鹏. 混凝土一维应力层裂实验的全场DIC分析. 力学学报. 2019(04): 1064-1072 . ![]() | |
7. | 吕可,王金安,李鹏波. 冲击地压巷道周边动力放大效应及支护参数调控策略. 采矿与安全工程学报. 2019(06): 1168-1177 . ![]() | |
8. | 周红套,李克钢. 动静组合荷载下岩石特性的三维数值模拟研究. 中国钨业. 2018(01): 54-59 . ![]() |