Volume 37 Issue 4
May  2017
Turn off MathJax
Article Contents
Lin Zhenya, Zhang Huanhao, Chen Zhihua, Liu Ying. Influence of magnetic field on interaction of shock wave with R22 heavy gas column[J]. Explosion And Shock Waves, 2017, 37(4): 748-758. doi: 10.11883/1001-1455(2017)04-0748-11
Citation: Lin Zhenya, Zhang Huanhao, Chen Zhihua, Liu Ying. Influence of magnetic field on interaction of shock wave with R22 heavy gas column[J]. Explosion And Shock Waves, 2017, 37(4): 748-758. doi: 10.11883/1001-1455(2017)04-0748-11

Influence of magnetic field on interaction of shock wave with R22 heavy gas column

doi: 10.11883/1001-1455(2017)04-0748-11
  • Received Date: 2016-03-24
  • Rev Recd Date: 2016-08-23
  • Publish Date: 2017-07-25
  • To study the interaction process of the plane incident shock wave with the magnetized R22 heavy gas column, we numerically simulated the deformation process of the shock-wave-induced R22 heavy gas column resulting from Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities under different initial conditions, and analyzed the jet focusing and inducing process by the transmitted shock wave. When the magnetic field was taken into consideration, the CTU + CT algorithm satisfying the divergence equation of the magnetic field at any time was adopted in the numerical simulation. The results show that the magnetic field is capable of restraining the instability of the shock-wave-induced R22 gas column. Both the normal magnetic field (vertical to the flow direction) and the tangential magnetic field (parallel to the flow direction) can inhibit the RM instability. However, the restraining of the normal magnetic field is more effective than that of the tangential one with regard to the KH instability, as it can not only inhibit the vortex train rolling up on the interface but also prevent the bound vortex from developing. Besides, it is found that the magnetic field has little influence on the jet, and the magnetic energy at the jet point can suppress the jet attenuation to some extent while the normal magnetic field can reduce the peak pressure and velocity when the transmitted shock wave is focused.
  • loading
  • [1]
    Meyer K A, Blewett P J. Numerical investigation of the stability of a shock-accelerated interface between two fluids[J]. Physics of Fluids, 1972, 15(5):753-759. doi: 10.1063/1.1693980
    [2]
    Zhang Q, Sohn S I. An analytical nonlinear theory of Richtmyer-Meshkov instability[J]. Physics Letters A, 1996, 212(3):149-155. doi: 10.1016/0375-9601(96)00021-7
    [3]
    Anuchina N N, Volkov V I, Gordeychuk V A, et al. Numerical simulations of Rayleigh-Taylor and Richtmyer-Meshkov instability using MAH-3 code[J]. Journal of Computational and Applied Mathematics, 2004, 168(1/2):11-20. http://cn.bing.com/academic/profile?id=faf4cdc7512f18529484c6b45fe5a4cc&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    Ruev G A, Fedorov A V, Fomin V M. Development of the Richtmyer-Meshkov instability upon interaction of a diffusion mixing layer of two gases with shock waves[J]. Journal of Applied Mechanics and Technical Physics, 2005, 46(3):307-314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=33cb95fc5314ec07df6946d2ba77037c
    [5]
    Niederhaus J H J, Greenough J A, Oakley J G, et al. A computational parameter study for the three-dimensional shock-bubble interaction[J]. Journal of Fluid Mechanics, 2008, 594:85-124. http://cn.bing.com/academic/profile?id=412d738c3ad78e224720d2313a46ddb5&encoded=0&v=paper_preview&mkt=zh-cn
    [6]
    Thornber B, Drikakis D, Youngs D. Large-eddy simulation of multi-component compressible turbulent flows using high resolution methods[J]. Computers and Fluids, 2008, 37(7):867-876. doi: 10.1016/j.compfluid.2007.04.009
    [7]
    Hejazialhosseini B, Rossinelli D, Bergdorf M, et al. High order finite volume methods on wavelet-adapted grids with local time-stepping on multicore architectures for the simulation of shock-bubble interactions.[J]. Journal of Computational Physics, 2010, 229(22):8364-8383. doi: 10.1016/j.jcp.2010.07.021
    [8]
    Schilling O, Latini M. High-order weno simulations of three-dimensional reshocked Richtmyer-Meshkov instability to late times: Dynamics, dependence on initial conditions, and comparisons to experimental data[J]. Acta Mathematica Scientia, 2010, 30(2):595-620. doi: 10.1016/S0252-9602(10)60064-1
    [9]
    Tian B, Shen W, Jiang S, et al. A global arbitrary Lagrangian-Eulerian method for stratified Richtmyer-Meshkov instability[J]. Computers and Fluids, 2011, 46(1):113-121. http://cn.bing.com/academic/profile?id=23c103f293bda4adebcd35feaf542796&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    Shankar S K, Kawai S, Lele S K. Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder[J]. Physics of Fluids, 2011, 23(2):131. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8036dad7385696611c022a99cb5bc7b7
    [11]
    Bailie C, Mcfarland J A, Greenough J A, et al. Effect of incident shock wave strength on the decay of Richtmyer-Meshkov instability-introduced perturbations in the refracted shock wave[J]. Shock Waves, 2012, 22(6):511-519. doi: 10.1007/s00193-012-0382-y
    [12]
    Chandrasekhar S. Hydrodynamic and hydromagnetic stability[M]. Dover Publications, 1961.
    [13]
    Wheatley V, Pullin D I, Samtaney R. Stability of an impulsively accelerated density interface in magnetohydrodynamics[J]. Physical Review Letters, 2005, 95(12):125002. doi: 10.1103/PhysRevLett.95.125002
    [14]
    Wheatley V, Samtaney R, Pullin D I. The magnetohydrodynamic Richtmyer-Meshkov instability: The transverse field case[C]//18th Australasian Fluid Mechanics Conference. Australasian Fluid Mechanics Society, 2012.
    [15]
    Khan M, Mandal L, Banerjee R, et al. Development of Richtmyer-Meshkov and Rayleigh-Taylor instability in presence of magnetic field[J]. Nuclear Instruments & Methods in Physics Research A, 2011, 653(1):2-6. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1101.3860
    [16]
    Cao J, Wu Z, Ren H, et al. Effects of shear flow and transverse magnetic field on Richtmyer-Meshkov instability[J]. Physics of Plasmas, 2008, 15(4):445-514. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c65ffb22c021910d193687d3d30e6647
    [17]
    Shin M S, Stone J M, Snyder G F. The magnetohydrodynamics of shock-cloud interaction in three dimensions[J]. Astrophysical Journal, 2008, 680(1):336-348. doi: 10.1086/529160
    [18]
    李源, 罗喜胜.黏性、表面张力和磁场对Rayleigh-Taylor不稳定性气泡演化影响的理论分析[J].物理学报, 2014, 2(8):277-285. http://d.old.wanfangdata.com.cn/Periodical/wlxb201408037

    Li Yuan, Luo Xisheng. Theoretical analysis of effects of viscosity, surface tension, and magnetic field on the bubble evolution of Rayleigh-Taylor instability[J]. Acta Physica Sinica, 2014, 2(8):277-285. http://d.old.wanfangdata.com.cn/Periodical/wlxb201408037
    [19]
    Saltzman J. An unsplit 3D upwind method for hyperbolic conservation laws[J]. Journal of Computational Physics, 1994, 115(1):153-168. doi: 10.1006/jcph.1994.1184
    [20]
    Gardiner T A, Stone J M. An unsplit Godunov method for ideal MHD via constrained transport[J]. Journal of Computational Physics, 2005, 205(2):509-539. doi: 10.1016/j.jcp.2004.11.016
    [21]
    Haas J, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. Journal of Fluid Mechanics, 1987, 181(1):41-76. http://cn.bing.com/academic/profile?id=f857b28c6f0747bace4c970ef14bb4aa&encoded=0&v=paper_preview&mkt=zh-cn
    [22]
    Chapman S, Cowling T G. The mathematical theory of non-uniform gases[M]. London: Cambridge University Press, 1970.
    [23]
    沙莎, 陈志华, 薛大文.激波冲击R22重气柱所导致的射流与混合研究[J].物理学报, 2013, 62(14):144701. doi: 10.7498/aps.62.144701

    Sha Sha, Chen Zhihua, Xue Dawen. The generation of jet and mixing induced by the interaction of shock wave with R22 cylinder[J]. Acta Physica Sinica, 2013, 62(14):144701. doi: 10.7498/aps.62.144701
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (4335) PDF downloads(215) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return