Citation: | Lin Zhenya, Zhang Huanhao, Chen Zhihua, Liu Ying. Influence of magnetic field on interaction of shock wave with R22 heavy gas column[J]. Explosion And Shock Waves, 2017, 37(4): 748-758. doi: 10.11883/1001-1455(2017)04-0748-11 |
[1] |
Meyer K A, Blewett P J. Numerical investigation of the stability of a shock-accelerated interface between two fluids[J]. Physics of Fluids, 1972, 15(5):753-759. doi: 10.1063/1.1693980
|
[2] |
Zhang Q, Sohn S I. An analytical nonlinear theory of Richtmyer-Meshkov instability[J]. Physics Letters A, 1996, 212(3):149-155. doi: 10.1016/0375-9601(96)00021-7
|
[3] |
Anuchina N N, Volkov V I, Gordeychuk V A, et al. Numerical simulations of Rayleigh-Taylor and Richtmyer-Meshkov instability using MAH-3 code[J]. Journal of Computational and Applied Mathematics, 2004, 168(1/2):11-20. http://cn.bing.com/academic/profile?id=faf4cdc7512f18529484c6b45fe5a4cc&encoded=0&v=paper_preview&mkt=zh-cn
|
[4] |
Ruev G A, Fedorov A V, Fomin V M. Development of the Richtmyer-Meshkov instability upon interaction of a diffusion mixing layer of two gases with shock waves[J]. Journal of Applied Mechanics and Technical Physics, 2005, 46(3):307-314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=33cb95fc5314ec07df6946d2ba77037c
|
[5] |
Niederhaus J H J, Greenough J A, Oakley J G, et al. A computational parameter study for the three-dimensional shock-bubble interaction[J]. Journal of Fluid Mechanics, 2008, 594:85-124. http://cn.bing.com/academic/profile?id=412d738c3ad78e224720d2313a46ddb5&encoded=0&v=paper_preview&mkt=zh-cn
|
[6] |
Thornber B, Drikakis D, Youngs D. Large-eddy simulation of multi-component compressible turbulent flows using high resolution methods[J]. Computers and Fluids, 2008, 37(7):867-876. doi: 10.1016/j.compfluid.2007.04.009
|
[7] |
Hejazialhosseini B, Rossinelli D, Bergdorf M, et al. High order finite volume methods on wavelet-adapted grids with local time-stepping on multicore architectures for the simulation of shock-bubble interactions.[J]. Journal of Computational Physics, 2010, 229(22):8364-8383. doi: 10.1016/j.jcp.2010.07.021
|
[8] |
Schilling O, Latini M. High-order weno simulations of three-dimensional reshocked Richtmyer-Meshkov instability to late times: Dynamics, dependence on initial conditions, and comparisons to experimental data[J]. Acta Mathematica Scientia, 2010, 30(2):595-620. doi: 10.1016/S0252-9602(10)60064-1
|
[9] |
Tian B, Shen W, Jiang S, et al. A global arbitrary Lagrangian-Eulerian method for stratified Richtmyer-Meshkov instability[J]. Computers and Fluids, 2011, 46(1):113-121. http://cn.bing.com/academic/profile?id=23c103f293bda4adebcd35feaf542796&encoded=0&v=paper_preview&mkt=zh-cn
|
[10] |
Shankar S K, Kawai S, Lele S K. Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder[J]. Physics of Fluids, 2011, 23(2):131. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8036dad7385696611c022a99cb5bc7b7
|
[11] |
Bailie C, Mcfarland J A, Greenough J A, et al. Effect of incident shock wave strength on the decay of Richtmyer-Meshkov instability-introduced perturbations in the refracted shock wave[J]. Shock Waves, 2012, 22(6):511-519. doi: 10.1007/s00193-012-0382-y
|
[12] |
Chandrasekhar S. Hydrodynamic and hydromagnetic stability[M]. Dover Publications, 1961.
|
[13] |
Wheatley V, Pullin D I, Samtaney R. Stability of an impulsively accelerated density interface in magnetohydrodynamics[J]. Physical Review Letters, 2005, 95(12):125002. doi: 10.1103/PhysRevLett.95.125002
|
[14] |
Wheatley V, Samtaney R, Pullin D I. The magnetohydrodynamic Richtmyer-Meshkov instability: The transverse field case[C]//18th Australasian Fluid Mechanics Conference. Australasian Fluid Mechanics Society, 2012.
|
[15] |
Khan M, Mandal L, Banerjee R, et al. Development of Richtmyer-Meshkov and Rayleigh-Taylor instability in presence of magnetic field[J]. Nuclear Instruments & Methods in Physics Research A, 2011, 653(1):2-6. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1101.3860
|
[16] |
Cao J, Wu Z, Ren H, et al. Effects of shear flow and transverse magnetic field on Richtmyer-Meshkov instability[J]. Physics of Plasmas, 2008, 15(4):445-514. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c65ffb22c021910d193687d3d30e6647
|
[17] |
Shin M S, Stone J M, Snyder G F. The magnetohydrodynamics of shock-cloud interaction in three dimensions[J]. Astrophysical Journal, 2008, 680(1):336-348. doi: 10.1086/529160
|
[18] |
李源, 罗喜胜.黏性、表面张力和磁场对Rayleigh-Taylor不稳定性气泡演化影响的理论分析[J].物理学报, 2014, 2(8):277-285. http://d.old.wanfangdata.com.cn/Periodical/wlxb201408037
Li Yuan, Luo Xisheng. Theoretical analysis of effects of viscosity, surface tension, and magnetic field on the bubble evolution of Rayleigh-Taylor instability[J]. Acta Physica Sinica, 2014, 2(8):277-285. http://d.old.wanfangdata.com.cn/Periodical/wlxb201408037
|
[19] |
Saltzman J. An unsplit 3D upwind method for hyperbolic conservation laws[J]. Journal of Computational Physics, 1994, 115(1):153-168. doi: 10.1006/jcph.1994.1184
|
[20] |
Gardiner T A, Stone J M. An unsplit Godunov method for ideal MHD via constrained transport[J]. Journal of Computational Physics, 2005, 205(2):509-539. doi: 10.1016/j.jcp.2004.11.016
|
[21] |
Haas J, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. Journal of Fluid Mechanics, 1987, 181(1):41-76. http://cn.bing.com/academic/profile?id=f857b28c6f0747bace4c970ef14bb4aa&encoded=0&v=paper_preview&mkt=zh-cn
|
[22] |
Chapman S, Cowling T G. The mathematical theory of non-uniform gases[M]. London: Cambridge University Press, 1970.
|
[23] |
沙莎, 陈志华, 薛大文.激波冲击R22重气柱所导致的射流与混合研究[J].物理学报, 2013, 62(14):144701. doi: 10.7498/aps.62.144701
Sha Sha, Chen Zhihua, Xue Dawen. The generation of jet and mixing induced by the interaction of shock wave with R22 cylinder[J]. Acta Physica Sinica, 2013, 62(14):144701. doi: 10.7498/aps.62.144701
|