Shen Huiming, Li Weibing, Wang Xiaoming, Li Wenbin, Dong Xiaoliang. Velocity distribution of fragments resulted by explosion of a cylindrical shell charge on multi-spots eccentric initiation[J]. Explosion And Shock Waves, 2017, 37(6): 1039-1045. doi: 10.11883/1001-1455(2017)06-1039-07
Citation: Ye Yang, Zeng Yawu, Jin Lei, Xia Lei. Normal restitution coefficient of sandstone spheres[J]. Explosion And Shock Waves, 2017, 37(5): 813-821. doi: 10.11883/1001-1455(2017)05-0813-09

Normal restitution coefficient of sandstone spheres

doi: 10.11883/1001-1455(2017)05-0813-09
  • Received Date: 2016-03-24
  • Rev Recd Date: 2016-07-11
  • Publish Date: 2017-09-25
  • The normal restitution coefficient (NRC) is a key parameter that determines the trajectory of the stone during a rockfall. In this study, using a test equipment and a sound-sampling technique developed by ourselves, we first measured the NRC of sandstone spheres and analyzed its influencing factors, i.e. the particle size, the impact velocity, the hydrous state and the elastic properties of the plate, and then we examined the size effect, the rate effect and the energy dissipation mechanism of the NRC. The results show that the NRC of sandstone spheres has a complex size effect which, with the increase of the size of sandstone spheres, at first increases and then decreases. The analysis shows that there exists two energy dissipation mechanisms, i.e. the viscoelastic dissipation and the elastoplastic damage dissipation, interacting with each other, which result in the complex size effect; that, due to the heterogeneity of sandstones, the velocity effect of the NRC is obvious when the diameter of the sandstone particle is small, while this effect is unobservable when the diameter is over 5 cm; that, compared with the NRC of air-drying sandstones, the saturation can cause the viscoelastic dissipation and elastoplastic damage dissipation to increase; and that the equivalent elastic modulus has a great impact on the NRC, i.e. the greater the equivalent elastic modulus, the smaller the NRC.
  • [1]
    Macciotta R, Martin C D, Cruden D M. Probabilistic estimation of rockfall height and kinetic energy based on a three-dimensional trajectory model and Monte Carlo simulation[J]. Landslides, 2015, 12(4):1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a9dc57c9a5d9090c5bb8e86734f01e7
    [2]
    Lu Y E, Zhang L M. Analysis of failure of a bridge foundation under rock impact[J]. Acta Geotechnica, 2012, 7(1):57-68. http://cn.bing.com/academic/profile?id=4a0f22e4c1efd78397c7278dd374361c&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    Chai B, Tang Z, Zhang A, et al. An uncertainty method for probabilistic analysis of buildings impacted by rockfall in a limestone quarry in Fengshan, Southwestern China[J]. Rock Mechanics & Rock Engineering, 2015, 48(5):1981-1996. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8d96584daf19bec589d0d7ae38492ae4
    [4]
    Antonyuk S, Heinrich S, Tomas J, et al. Energy absorption during compression and impact of dry elastic-plastic spherical granules[J]. Granular Matter, 2010, 12(1):15-47. doi: 10.1007/s10035-009-0161-3
    [5]
    章广成, 向欣, 唐辉明.落石碰撞恢复系数的现场试验与数值计算[J].岩石力学与工程学报, 2011, 30(6):1266-1273. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201106021

    Zhang Guangcheng, Xiang Xin, Tang Huiming. Field test and numerical calculation of restitution coefficient of rockfall collision[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6):1266-1273. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201106021
    [6]
    Dong H K, Gratchev I, Berends J, et al. Calibration of restitution coefficients using rockfall simulations based on 3D photogrammetry model: a case study[J]. Natural Hazards, 2015, 78(3):1-16. http://cn.bing.com/academic/profile?id=9b798d9b1f23ad6aad462d320063ac24&encoded=0&v=paper_preview&mkt=zh-cn
    [7]
    叶四桥, 巩尚卿.落石碰撞法向恢复系数的模型试验研究[J].中国铁道科学, 2015, 36(4):13-19. doi: 10.3969/j.issn.1001-4632.2015.04.03

    Ye Siqiao, Gong Shangqing. Research on normal restitution coefficient of rockfall collision by model tests[J]. China Railway Science, 2015, 36(4):13-19. doi: 10.3969/j.issn.1001-4632.2015.04.03
    [8]
    Asteriou P, Saroglou H, Tsiambaos G. Geotechnical and kinematic parameters affecting the coefficients of restitution for rock fall analysis[J]. International Journal of Rock Mechanics & Mining Sciences, 2012, 54(3):103-113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ff819cc84eb7ffed461e1460602950e4
    [9]
    Ritchie A M. Evaluation of rockfall and its control[J]. Highway Research Record, 1963, 17:13-28.
    [10]
    Gigli G, Morelli S, Fornera S, et al. Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rock fall susceptibility scenarios[J]. Landslides, 2014, 11(1):1-14. doi: 10.1007/s10346-012-0374-0
    [11]
    Harp E L, Dart R L, Reichenbach P. Rock fall simulation at timpanogos cave national monument, American Fork Canyon, Utah, USA[J]. Landslides, 2011, 8(3):373-379. doi: 10.1007/s10346-010-0251-7
    [12]
    Wang X, Frattini P, Crosta G B, et al. Uncertainty assessment in quantitative rockfall risk assessment[J]. Landslides, 2014, 11(4):711-722. doi: 10.1007/s10346-013-0447-8
    [13]
    Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1):331-336. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1208.0565
    [14]
    何思明, 吴永, 李新坡.滚石冲击碰撞恢复系数研究[J].岩土力学, 2009, 30(3):623-627. doi: 10.3969/j.issn.1000-7598.2009.03.008

    He Siming, Wu Yong, Li Xinpo. Research on restitution coefficient of rock fall[J]. Rock and Soil Mechanics, 2009, 30(3):623-627. doi: 10.3969/j.issn.1000-7598.2009.03.008
    [15]
    Landau L D, Lifschitz E M. Theoretische physik. Band Ⅶ: Elastizitä tstheorie[M]. Moskau: Fizmatlit Press, 2001.
    [16]
    Alizadeh E, Bertrand F, Chaouki J. Development of a granular normal contact force model based on a non-Newtonian liquid filled dashpot[J]. Powder Technology, 2013, 237(3):202-212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f1af19143347ad95bb6afc07870ff4a
    [17]
    Brilliantov N V, Spahn F, Hertzsch J M, et al. Model for collisions in granular gases[J]. Physical Review E, 1996, 53(5):5382-5392. doi: 10.1103/PhysRevE.53.5382
    [18]
    Fu J, Adams M J, Reynolds G K, et al. Impact deformation and rebound of wet granules[J]. Powder Technology, 2004, 140(3):248-257. doi: 10.1016/j.powtec.2004.01.012
    [19]
    Higa M, Arakawa M, Maeno N. Size dependence of restitution coefficients of ice in relation to collision strength[J]. Icarus, 1998, 133(2):310-320. doi: 10.1006/icar.1998.5938
    [20]
    Johnson K L.接触力学[M].徐秉业, 罗学富, 刘信声, 等译.北京: 高等教育出版社, 1992.
    [21]
    Dmytro A, Elliott J A, Hancock B C. Effect of particle size on energy dissipation in viscoelastic granular collisions[J]. Physical Review E, 2011, 84(2):1713-1724. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8e426785648408c5d5d449c2a5f36e74
    [22]
    Wu C Y, Li L Y, Thornton C. Rebound behaviour of spheres for plastic impacts[J]. International Journal of Impact Engineering, 2003, 28(9):929-946. doi: 10.1016/S0734-743X(03)00014-9
    [23]
    Thornton C. Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres[J]. Journal of Applied Mechanics, 1997, 64(2):383-386. doi: 10.1115/1.2787319
    [24]
    Fu J S, Cheong Y S, Reynolds G K, et al. An experimental study of the variability in the properties and quality of wet granules[J]. Powder Technology, 2004, 140(3):209-216. doi: 10.1016/j.powtec.2004.01.019
  • Relative Articles

    [2]Cover[J]. Explosion And Shock Waves, 2023, 43(9).
    [4]cover[J]. Explosion And Shock Waves, 2022, 42(6).
    [5]cover[J]. Explosion And Shock Waves, 2022, 42(12).
    [6]cover[J]. Explosion And Shock Waves, 2022, 42(3).
    [7]cover[J]. Explosion And Shock Waves, 2022, 42(8).
    [8]cover[J]. Explosion And Shock Waves, 2022, 42(5).
    [14]contents[J]. Explosion And Shock Waves, 2022, 42(5): 1-2.
    [16]contents[J]. Explosion And Shock Waves, 2022, 42(6): 1-2.
    [17]Contents[J]. Explosion And Shock Waves, 2022, 42(2): 1-2.
    [19]contents[J]. Explosion And Shock Waves, 2022, 42(7): 1-2.
    [20]cover[J]. Explosion And Shock Waves, 2022, 42(9).
  • Cited by

    Periodical cited type(12)

    1. 张志涛,张海峰,王颖,王明广,刘凯,李博,张迪,于良. 某小口径埋头弹弹体破碎性研究. 弹道学报. 2024(01): 78-84 .
    2. 朱建军,霍宪旭,李伟兵. 爆炸动载下金属柱壳破片速度场分布研究. 南京理工大学学报. 2024(02): 148-154+174 .
    3. 刘恒言,梁争峰,阮喜军,程淑杰. 基于微元法的偏心起爆战斗部破片初速计算方法. 含能材料. 2024(07): 683-692 .
    4. 邓宇轩,张先锋,冯可华,刘闯,杜宁,刘均伟,李鹏程. 椭圆截面战斗部爆炸驱动破片作用过程的数值模拟. 高压物理学报. 2022(02): 155-165 .
    5. 于佳鑫,李伟兵,任冠群,王晓鸣. 基于复合装药结构的偏心起爆定向控制研究. 兵器装备工程学报. 2022(03): 107-111 .
    6. 陈红,李世中,常慧珠. 起爆方式对定向战斗部爆轰波压力场影响研究. 弹箭与制导学报. 2022(04): 92-96+118 .
    7. 陈红,李世中,杨超. 六分位探测引信战斗部起爆控制的建模及仿真. 现代防御技术. 2022(05): 140-151 .
    8. 孙兴昀,李亮亮,陈元建,郑雄伟,李鑫,阮喜军,苗润源,刘韩辉,王娟娟. 大质量超高速金属破片实验技术研究进展. 兵器装备工程学报. 2021(01): 122-129 .
    9. 李瑞,李伟兵,靳洪忠,王桂林,洪晓文,朱建军,李文彬,王晓鸣. 基于Jones-Wilkins-Lee状态方程的爆轰波相互作用参数理论分析. 兵工学报. 2019(03): 516-521 .
    10. 邢柏阳,侯云辉,李泰华,张东江,刘荣忠,郭锐. 爆炸成型弹丸垂直侵彻装甲钢靶后破片动能分析. 兵工学报. 2019(10): 2014-2021 .
    11. 孔祥韶,王旭阳,徐敬博,郑成,徐双喜,袁天,吴卫国. 复合防护液舱抗爆效能对比试验研究. 兵工学报. 2018(12): 2438-2449 .
    12. 邢柏阳,郭锐,侯云辉,张东江,刘荣忠,陈亮,杨永亮,高科,骆建华. 变截面爆炸成型弹丸垂直侵彻装甲钢板靶后破片轴向分布分析. 兵工学报. 2018(S1): 62-65 .

    Other cited types(7)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (4370) PDF downloads(210) Cited by(19)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return