Citation: | Meng Xueping, Lei Bin, Xiang Hongjun, Lü Qing'ao, Huang Xu. Effect of pulsed current of coil on pinching characteristics of shaped charge jet[J]. Explosion And Shock Waves, 2017, 37(5): 923-928. doi: 10.11883/1001-1455(2017)05-0923-06 |
[1] |
陈闯, 王晓鸣, 李文彬, 等.爆轰波波形与药型罩结构匹配对杆式射流成形的影响[J].爆炸与冲击, 2015, 35(6):812-819. doi: 10.11883/1001-1455(2015)06-0812-08
Chen Chuang, Wang Xiaoming, Li Wenbin, et al. Effect of matching of detonation waveform with liner configuration on the rod-like jet formation[J]. Explosion and Shock Waves, 2015, 35(6):812-819. doi: 10.11883/1001-1455(2015)06-0812-08
|
[2] |
Karlsson H E V. Computer simulation of shaped charge jet fragmentation[C]//The 19th International Symposium on Ballistics. Interlaken, Switzerland, 2001: 819-826. http: //aux.ciar.org/ttk/mbt/papers/symp_19/WM36_819.pdf
|
[3] |
Horsfall I, Petrou E, Champion S M. Shaped charge attack of spaced and composite armour[C]//The 23th International Symposium on Ballistics. Tarragona, Spain, 2007: 1281-1288.
|
[4] |
Shvetsov G A, Matrosov A D, Fedorov S V, et al. Electromagnetic control of the shaped-charge effect[C]//The 19th International Symposium of Ballistics. Interlaken, Switzerland, 2001: 851-857.
|
[5] |
Shvetsov G A, Matrosov A D. Qualitative physical model for the disruption of shaped-charge jets by a current pulse[C]//The 20th International Symposium on Ballistics. Orlando, FL, 2002: 613-619.
|
[6] |
Shvetsov G A, Matrosov A D, Fedorov S V, et al. Effect of external magnetic fields on shaped-charge operation[J]. International Journal of Impact Engineering, 2011, 38(6):521-526. doi: 10.1016/j.ijimpeng.2010.10.024
|
[7] |
Fedorov S V, Babkin A V, Ladov S V, et al. Magnetic armor as a method of anti-terror protection of objects against shaped-charge action[C]//The 23th International Symposium on Ballistics. Tarragona, Spain, 2007: 1091-1098.
|
[8] |
Fedorov S V. Magnetic stabilization of elongation of metal shaped charge jets[C]//The 25th International Symposium on Ballistics. Beijing, 2010: 967-975. http: //www.wanfangdata.com.cn/details/detail.do?_type=conference&id=WFHYXW378921
|
[9] |
Fedorov S V, Ladov S V. Powerful electric discharge as method of anti-shaped-charge protection[C]//The 27th International Symposium on Ballistics. Freiburg, Germany, 2013: 1723-1734.
|
[10] |
Grace F, Degnan J, Roth C, et al. Shaped charge jets driven by electromagnetic energy[C]//The 28th International Symposium on Ballistics. Atlanta, GA, 2014: 15-26.
|
[11] |
俎栋林.电动力学[M].北京:清华大学出版社, 2006:111-117.
|
[12] |
孙承纬.爆炸物理学[M].北京:科学出版社, 2011:1048-1061.
|
[13] |
金龙文, 雷彬, 李治源, 等.轨道炮刨削形成机理分析及数值模拟[J].爆炸与冲击, 2013, 33(5):537-543. doi: 10.3969/j.issn.1001-1455.2013.05.014
Jin Longwen, Lei Bin, Li Zhiyuan, et al. Formation mechanism analysis and numerical simulation of railgun gouging[J]. Explosion and Shock Waves, 2013, 33(5):537-543. doi: 10.3969/j.issn.1001-1455.2013.05.014
|
[1] | CAI Chongchong, SU Yang, WANG Yan. Research progress on the deflagration characteristics and explosion suppression of hydrogen-rich methane[J]. Explosion And Shock Waves, 2024, 44(7): 071101. doi: 10.11883/bzycj-2023-0330 |
[2] | NI Hao, YANG Renshu, TAN Zhuoying, DING Chenxi, LIN Hai, WANG Yu, WU Haotian. An experimental study on temperature field evolution of carbon dioxide blasting jets[J]. Explosion And Shock Waves, 2023, 43(12): 123902. doi: 10.11883/bzycj-2023-0227 |
[3] | YAN Ke, MENG Xiangbao, PAN Zhichao, WANG Zheng, ZHANG Yansong. Effect and mechanism of KH2PO4/SiO2 composite powder in inhibiting aluminum dust deflagration[J]. Explosion And Shock Waves, 2022, 42(6): 062101. doi: 10.11883/bzycj-2021-0190 |
[4] | CHENG Fangming, NAN Fan, XIAO Yang, LUO Zhenmin, NIU Qiaoxia. Experimental study on the suppression of methane-air explosion by CF3I and CO2[J]. Explosion And Shock Waves, 2022, 42(6): 065402. doi: 10.11883/bzycj-2021-0386 |
[5] | LU Chang, ZHANG Yunpeng, ZHU Han, WANG Hongbo, LU Haoxin, PAN Rongkun. The spurted nitrogen preventing the gas explosion in pipe[J]. Explosion And Shock Waves, 2020, 40(4): 042101. doi: 10.11883/bzycj-2019-0106 |
[6] | PEI Bei, WEI Shuangming, CHEN Liwei, PAN Rongkun, WANG Yan, YU Minggao, LI Jie. Effect of CO2-ultrafine water mist on initial explosion characteristics of CH4/Air[J]. Explosion And Shock Waves, 2019, 39(2): 025402. doi: 10.11883/bzycj-2018-0147 |
[7] | WANG Yalei, ZHENG Ligang, YU Shuijun, ZHU Xiaochao, LI Gang, DU Depeng, DOU Zengguo. Effect of vented end faces on characteristics of methane explosion in duct[J]. Explosion And Shock Waves, 2019, 39(9): 095401. doi: 10.11883/bzycj-2018-0249 |
[8] | ZHAO Xiangyu, LI Hongbo, LI Zili, CUI Gan, FU Yang. Experimental study on the minimum ignition energy of methane at low temperature[J]. Explosion And Shock Waves, 2018, 38(2): 353-358. doi: 10.11883/bzycj-2016-0218 |
[9] | YU Jianliang, SUN Huili, JI Wentao, YAN Xingqing, ZHANG Xinyan, CAI Linfeng. Explosion severity parameters of hybrid mixture of methane and lycopodium dust[J]. Explosion And Shock Waves, 2018, 38(1): 92-97. doi: 10.11883/bzycj-2016-0276 |
[10] | WANG Chaoqiang, YANG Shigang, FANG Qin, BAO Qi. Effect of ignition position on overpressure in vented explosion of methane-air mixtures[J]. Explosion And Shock Waves, 2018, 38(4): 898-904. doi: 10.11883/bzycj-2016-0344 |
[11] | Yu Jianliang, Ji Wentao, Sun Huili, Yan Xingqing, Zhang Xinyan. Experimental investigation of the lower explosion limit of hybrid mixtures of methane and lycopodium dust[J]. Explosion And Shock Waves, 2017, 37(6): 924-930. doi: 10.11883/1001-1455(2017)06-0924-07 |
[12] | Gao Hui-hui, Zhang Bo, Qiao Jian-jiang, Yang Shao-peng, Chen Ting, Chen Xiao. Explosion characteristics of dimethyl ether/air/argon mixtures[J]. Explosion And Shock Waves, 2015, 35(5): 753-757. doi: 10.11883/1001-1455(2015)05-0753-05 |
[13] | Li Run-zhi, Si Rong-jun. Simulation study of flow field characteristics of gas explosion in low temperature environment[J]. Explosion And Shock Waves, 2015, 35(6): 901-906. doi: 10.11883/1001-1455(2015)06-0901-06 |
[14] | Luo Zhen-min, Wang Tao, Cheng Fang-ming, Song Yu, Wu Kang. Experimental and numerical studies on the suppression of methane explosion using CO2 in a mini vessel[J]. Explosion And Shock Waves, 2015, 35(3): 393-400. doi: 10.11883/1001-1455-(2015)03-0393-08 |
[15] | LIANG Yun-tao, ZENG Wen. Kineticcharacteristicsandinfluencingfactorsof gasexplosioninducedbyshockwave[J]. Explosion And Shock Waves, 2010, 30(4): 370-376. doi: 10.11883/1001-1455(2010)04-0370-07 |
[16] | GAO Cong, LI Hua, SU Dan, HUANG Wei-Xing. Explosion characteristics of coal dust in a sealed vessel[J]. Explosion And Shock Waves, 2010, 30(2): 164-168. doi: 10.11883/1001-1455(2010)02-0164-05 |
[17] | ZHANG Liang, WEI Xiao-Lin, YU Li-Xin, ZHANG Yu, LI Teng, LI Bo. Deflagration characteristics of a preheated CO-air mixture in a duct[J]. Explosion And Shock Waves, 2010, 30(2): 191-196. doi: 10.11883/1001-1455(2010)02-0191-06 |
[18] | XIE Li-feng, LI Bin, SHEN Zheng-xiang, LONG Yin. Experiment on combustion and detonation characteristics and its suppression for liquid vapor[J]. Explosion And Shock Waves, 2009, 29(6): 659-664. doi: 10.11883/1001-1455(2009)06-0659-06 |
[19] | ZHANG A-man, YAO Xiong-liang. On dynamics of an underwater explosion bubble near a boundary[J]. Explosion And Shock Waves, 2008, 28(2): 124-130. doi: 10.11883/1001-1455(2008)02-0124-07 |
[20] | WANG Zheng, NI Yu-shan, CAO Ju-zhen, ZHANG Wen. Recent advances of dynamic mechanical behavior of concrete under impact loading[J]. Explosion And Shock Waves, 2005, 25(6): 519-527. doi: 10.11883/1001-1455(2005)06-0519-09 |