Volume 37 Issue 6
Sep.  2017
Turn off MathJax
Article Contents
Fang Qiancheng, Shang Li, Shang Yonghui, Song Yi. Random forest model for identification of residential structure damage induced by blast vibration[J]. Explosion And Shock Waves, 2017, 37(6): 939-945. doi: 10.11883/1001-1455(2017)06-0939-07
Citation: Fang Qiancheng, Shang Li, Shang Yonghui, Song Yi. Random forest model for identification of residential structure damage induced by blast vibration[J]. Explosion And Shock Waves, 2017, 37(6): 939-945. doi: 10.11883/1001-1455(2017)06-0939-07

Random forest model for identification of residential structure damage induced by blast vibration

doi: 10.11883/1001-1455(2017)06-0939-07
  • Received Date: 2015-11-07
  • Rev Recd Date: 2016-04-22
  • Publish Date: 2017-11-25
  • In this work, aiming to the prediction speed and accuracy, we established a random forest model for residential structure damage induced by blast vibration identification on the basis of the random forest (RF) theory. Twelve indexes, i.e. peak particle velocity, dominant frequency, dominant frequency duration, maximum charge per delay, distance, gray joints intensity, rate of brick walls, height of housing, roof structures parameter, beam-column frames parameter, quality parameter of construction and site conditions parameters, were considered as the criterion indices for this kind of damage in the proposed model based on the of analysis of the characteristic parameters of blasting vibration and dynamic characteristics of the housing structure. 108 sets of vibration measured data were investigated to create an RF classifier. RF was a combination of tree predictors, and variable importance was measured by gini importance parameter when the forest grows. A random tree was a combination of decision trees, and each tree is generated depending on the values of random vectors sampled independently, with the same distribution for all trees in the forest. The Gini importance value shows that the peak particle velocity is the most important discrimination indicator, followed by the distance, the dominant frequency duration, the dominant frequency, the beam-column frames parameter, the gray joints intensity, the roof structures parameter, the height of housing, the maximum charge per delay, the quality parameter of construction, the rate of brick walls and the site conditions parameters. Another twelve groups of residential structure damage instances were tested as forecast samples, and the predicted results were identical with the actual situation. Engineering practices indicate that the accuracy of the RF method of learning samples is 87.97%, and the accuracy of the test samples is 91.7%, effectively verifying and supplementing the existing methods for evaluating residential structure damage induced by blast vibration.
  • loading
  • [1]
    Khandelwal M, Singh T N.Evaluation of blast-induced ground vibration predictors[J].Soil Dynamics and Earthquake Engineering, 2007, 27(2):116-125. doi: 10.1016/j.soildyn.2006.06.004
    [2]
    Siskind D E, Stagg M S, Kopp J W, et al. Structure response and damage produced by ground vibration from surface mine blasting[R]. USBM Report of Investigation 8507, 1980: 73-74. i
    [3]
    中华人民共和国国家标准编写组. 爆破安全规程: GB6722-2014[S]. 北京: 中国标准出版社, 2015.
    [4]
    史秀志, 周健, 崔松, 等.露天采矿爆破振动对民房危害预测的DDA模型及应用[J].中南大学学报(自然科学版), 2011, 42(2):441-448. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201102027

    Shi Xiuzhi, Zhou Jian, Cui Song, et al.Distance discriminant analysis model and its application for prediction residential house's damage against blasting vibration of open pit mining[J].Journal of Central South University (Science and Technology), 2011, 42(2):441-448. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201102027
    [5]
    史秀志, 周健, 杜坤, 等.爆破振动对民房破坏效应预测的BDA模型及应用[J].振动与冲击, 2010, 29(7):60-65. doi: 10.3969/j.issn.1000-3835.2010.07.013

    Shi Xiuzhi, Zhou Jian, Du Kun, et al.BDA model for predicting destructive effect of blast vibration on housing[J].Journal of Vibration and Shock, 2010, 29(7):60-65. doi: 10.3969/j.issn.1000-3835.2010.07.013
    [6]
    中国生, 徐国元, 熊正明.基于小波变换的爆破地震信号能量分析法的应用研究[J].爆炸与冲击, 2006, 26(3):222-227. doi: 10.3321/j.issn:1001-1455.2006.03.005

    Zhong Guosheng, Xu Guoyuan, Xiong Zhengming.Application research of the energy analysis method for blasting seismic signals based on wavelet transform[J].Explosion and Shock Waves, 2006, 26(3):222-227. doi: 10.3321/j.issn:1001-1455.2006.03.005
    [7]
    史秀志, 周健, 崔松, 等.露天采矿爆破振动对民房危害预测的DDA模型及应用[J].中南大学学报(自然科学版), 2011, 42(2):441-448. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201102027

    Shi Xiuzhi, Zhou Jian, Cui Song, et al.Distance discriminant analysis model and its application for prediction residential house's damage against blasting vibration of open pit mining[J].Journal of Central South University (Science and Technology), 2011, 42(2):441-448. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201102027
    [8]
    史秀志, 周健, 杜坤, 等.爆破振动对民房破坏效应预测的BDA模型及应用[J].振动与冲击, 2010, 29(7):60-65. doi: 10.3969/j.issn.1000-3835.2010.07.013

    Shi Xiuzhi, Zhou Jian, Du Kun, et al.BDA model for predicting destructive effect of blast vibration on housing[J].Journal of Vibration and Shock, 2010, 29(7):60-65. doi: 10.3969/j.issn.1000-3835.2010.07.013
    [9]
    董陇军, 李夕兵, 赵国彦, 等.露天采矿爆破振动对砌体结构破坏效应预测的Fisher判别模型及应用[J].岩石力学与工程学报, 2009, 28(4):750-756. doi: 10.3321/j.issn:1000-6915.2009.04.013

    Dong Longjun, Li Xibing, Zhao Guoyan, et al.Fisher discriminant analysis model and its application to predicting destructive effect of masonry structure under blasting vibration of open-pit mine[J].Chinese Journal of Rock Mechanics and Engineering, 2009, 28(4):750-756. doi: 10.3321/j.issn:1000-6915.2009.04.013
    [10]
    Zhou J, Shi X, Li X.Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining[J].Journal of Vibration and Control, 2015, 22(19).DOI: 10.1177/1077546314568172.
    [11]
    史秀志. 爆破振动信号时频分析与爆破振动预测研究[D]. 长沙: 中南大学, 2007.
    [12]
    Melih I, Mahmut Y, Hakan A.Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system[J].Environmental Geology, 2008, 56(11):97-107. doi: 10.1007/s00254-007-1143-6
    [13]
    Shi X Z, Zhou J.Prediction residential house's damage effect near openpit against blasting vibration based on svm with grid searching method/genetic algorithm[J].Advanced Science Letters, 2012, 11(1):238-243. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=66b331ff4b09ecb8641a35da2efeceeb
    [14]
    Breiman L.Random forests[J].Machine Learning, 2001, 45:5-32. doi: 10.1023/A:1010933404324
    [15]
    方匡南, 吴见彬, 朱建平等.随机森林方法研究综述[J].统计与信息论坛, 2011, 26(3):32-38. doi: 10.3969/j.issn.1007-3116.2011.03.006

    Fang Kuangnan, Wu Jianbin, Zhu Jianping, et al.A review of technologies on random forests[J].Statistics & Information Forum, 2011, 26(3):32-38. doi: 10.3969/j.issn.1007-3116.2011.03.006
    [16]
    秦锋, 杨波, 程泽凯.分类器性能评价标准研究[J].计算机技术与发展, 2006, 16(10):85-88. doi: 10.3969/j.issn.1673-629X.2006.10.029

    Qin Feng, Yang Bo, Chen Zekai.Research on measure criteria in evaluating classification performance[J].Computer Technology and Development, 2006, 16(10):85-88. doi: 10.3969/j.issn.1673-629X.2006.10.029
    [17]
    Congalton R G.A review of assessing the accuracy of classifications of remotely sensed data[J].Working Pages, 1991, 119(2):270-279. http://www.sciencedirect.com/science/article/pii/003442579190048B
    [18]
    Landis J, Koch G.The measurement of observer agreement for categorical data[J].Biometrics, 1977, 33(1):159-174. doi: 10.2307/2529310
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article Metrics

    Article views (4271) PDF downloads(314) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return