LOU Xiaoming, GUAN Xuhui, ZENG Lingfeng, GUO Wenkang, YUE Bin, LU Wei. Characteristics of the impact pressure of the hole wall by interval charge at the hole bottom[J]. Explosion And Shock Waves, 2023, 43(6): 065201. doi: 10.11883/bzycj-2022-0109
Citation: Fang Qiancheng, Shang Li, Shang Yonghui, Song Yi. Random forest model for identification of residential structure damage induced by blast vibration[J]. Explosion And Shock Waves, 2017, 37(6): 939-945. doi: 10.11883/1001-1455(2017)06-0939-07

Random forest model for identification of residential structure damage induced by blast vibration

doi: 10.11883/1001-1455(2017)06-0939-07
  • Received Date: 2015-11-07
  • Rev Recd Date: 2016-04-22
  • Publish Date: 2017-11-25
  • In this work, aiming to the prediction speed and accuracy, we established a random forest model for residential structure damage induced by blast vibration identification on the basis of the random forest (RF) theory. Twelve indexes, i.e. peak particle velocity, dominant frequency, dominant frequency duration, maximum charge per delay, distance, gray joints intensity, rate of brick walls, height of housing, roof structures parameter, beam-column frames parameter, quality parameter of construction and site conditions parameters, were considered as the criterion indices for this kind of damage in the proposed model based on the of analysis of the characteristic parameters of blasting vibration and dynamic characteristics of the housing structure. 108 sets of vibration measured data were investigated to create an RF classifier. RF was a combination of tree predictors, and variable importance was measured by gini importance parameter when the forest grows. A random tree was a combination of decision trees, and each tree is generated depending on the values of random vectors sampled independently, with the same distribution for all trees in the forest. The Gini importance value shows that the peak particle velocity is the most important discrimination indicator, followed by the distance, the dominant frequency duration, the dominant frequency, the beam-column frames parameter, the gray joints intensity, the roof structures parameter, the height of housing, the maximum charge per delay, the quality parameter of construction, the rate of brick walls and the site conditions parameters. Another twelve groups of residential structure damage instances were tested as forecast samples, and the predicted results were identical with the actual situation. Engineering practices indicate that the accuracy of the RF method of learning samples is 87.97%, and the accuracy of the test samples is 91.7%, effectively verifying and supplementing the existing methods for evaluating residential structure damage induced by blast vibration.
  • [1]
    Khandelwal M, Singh T N.Evaluation of blast-induced ground vibration predictors[J].Soil Dynamics and Earthquake Engineering, 2007, 27(2):116-125. doi: 10.1016/j.soildyn.2006.06.004
    [2]
    Siskind D E, Stagg M S, Kopp J W, et al. Structure response and damage produced by ground vibration from surface mine blasting[R]. USBM Report of Investigation 8507, 1980: 73-74. i
    [3]
    中华人民共和国国家标准编写组. 爆破安全规程: GB6722-2014[S]. 北京: 中国标准出版社, 2015.
    [4]
    史秀志, 周健, 崔松, 等.露天采矿爆破振动对民房危害预测的DDA模型及应用[J].中南大学学报(自然科学版), 2011, 42(2):441-448. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201102027

    Shi Xiuzhi, Zhou Jian, Cui Song, et al.Distance discriminant analysis model and its application for prediction residential house's damage against blasting vibration of open pit mining[J].Journal of Central South University (Science and Technology), 2011, 42(2):441-448. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201102027
    [5]
    史秀志, 周健, 杜坤, 等.爆破振动对民房破坏效应预测的BDA模型及应用[J].振动与冲击, 2010, 29(7):60-65. doi: 10.3969/j.issn.1000-3835.2010.07.013

    Shi Xiuzhi, Zhou Jian, Du Kun, et al.BDA model for predicting destructive effect of blast vibration on housing[J].Journal of Vibration and Shock, 2010, 29(7):60-65. doi: 10.3969/j.issn.1000-3835.2010.07.013
    [6]
    中国生, 徐国元, 熊正明.基于小波变换的爆破地震信号能量分析法的应用研究[J].爆炸与冲击, 2006, 26(3):222-227. doi: 10.3321/j.issn:1001-1455.2006.03.005

    Zhong Guosheng, Xu Guoyuan, Xiong Zhengming.Application research of the energy analysis method for blasting seismic signals based on wavelet transform[J].Explosion and Shock Waves, 2006, 26(3):222-227. doi: 10.3321/j.issn:1001-1455.2006.03.005
    [7]
    史秀志, 周健, 崔松, 等.露天采矿爆破振动对民房危害预测的DDA模型及应用[J].中南大学学报(自然科学版), 2011, 42(2):441-448. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201102027

    Shi Xiuzhi, Zhou Jian, Cui Song, et al.Distance discriminant analysis model and its application for prediction residential house's damage against blasting vibration of open pit mining[J].Journal of Central South University (Science and Technology), 2011, 42(2):441-448. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201102027
    [8]
    史秀志, 周健, 杜坤, 等.爆破振动对民房破坏效应预测的BDA模型及应用[J].振动与冲击, 2010, 29(7):60-65. doi: 10.3969/j.issn.1000-3835.2010.07.013

    Shi Xiuzhi, Zhou Jian, Du Kun, et al.BDA model for predicting destructive effect of blast vibration on housing[J].Journal of Vibration and Shock, 2010, 29(7):60-65. doi: 10.3969/j.issn.1000-3835.2010.07.013
    [9]
    董陇军, 李夕兵, 赵国彦, 等.露天采矿爆破振动对砌体结构破坏效应预测的Fisher判别模型及应用[J].岩石力学与工程学报, 2009, 28(4):750-756. doi: 10.3321/j.issn:1000-6915.2009.04.013

    Dong Longjun, Li Xibing, Zhao Guoyan, et al.Fisher discriminant analysis model and its application to predicting destructive effect of masonry structure under blasting vibration of open-pit mine[J].Chinese Journal of Rock Mechanics and Engineering, 2009, 28(4):750-756. doi: 10.3321/j.issn:1000-6915.2009.04.013
    [10]
    Zhou J, Shi X, Li X.Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining[J].Journal of Vibration and Control, 2015, 22(19).DOI: 10.1177/1077546314568172.
    [11]
    史秀志. 爆破振动信号时频分析与爆破振动预测研究[D]. 长沙: 中南大学, 2007.
    [12]
    Melih I, Mahmut Y, Hakan A.Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system[J].Environmental Geology, 2008, 56(11):97-107. doi: 10.1007/s00254-007-1143-6
    [13]
    Shi X Z, Zhou J.Prediction residential house's damage effect near openpit against blasting vibration based on svm with grid searching method/genetic algorithm[J].Advanced Science Letters, 2012, 11(1):238-243. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=66b331ff4b09ecb8641a35da2efeceeb
    [14]
    Breiman L.Random forests[J].Machine Learning, 2001, 45:5-32. doi: 10.1023/A:1010933404324
    [15]
    方匡南, 吴见彬, 朱建平等.随机森林方法研究综述[J].统计与信息论坛, 2011, 26(3):32-38. doi: 10.3969/j.issn.1007-3116.2011.03.006

    Fang Kuangnan, Wu Jianbin, Zhu Jianping, et al.A review of technologies on random forests[J].Statistics & Information Forum, 2011, 26(3):32-38. doi: 10.3969/j.issn.1007-3116.2011.03.006
    [16]
    秦锋, 杨波, 程泽凯.分类器性能评价标准研究[J].计算机技术与发展, 2006, 16(10):85-88. doi: 10.3969/j.issn.1673-629X.2006.10.029

    Qin Feng, Yang Bo, Chen Zekai.Research on measure criteria in evaluating classification performance[J].Computer Technology and Development, 2006, 16(10):85-88. doi: 10.3969/j.issn.1673-629X.2006.10.029
    [17]
    Congalton R G.A review of assessing the accuracy of classifications of remotely sensed data[J].Working Pages, 1991, 119(2):270-279. http://www.sciencedirect.com/science/article/pii/003442579190048B
    [18]
    Landis J, Koch G.The measurement of observer agreement for categorical data[J].Biometrics, 1977, 33(1):159-174. doi: 10.2307/2529310
  • Relative Articles

    [1]MA Sizhou, LIU Kewei, YANG Jiacai, LI Xudong. Size distribution characteristics of blast-induced rock fragmentation under decoupled charge structures[J]. Explosion And Shock Waves, 2024, 44(4): 045201. doi: 10.11883/bzycj-2023-0358
    [2]LOU Xiaoming, CHEN Shiwei, LI Guangbin, NIU Mingyuan, LIN Rizong, YAO Bingjin. Stage characteristics of impact pressure of blasthole-walls with different diameters under coupled charge conditions[J]. Explosion And Shock Waves, 2023, 43(8): 085201. doi: 10.11883/bzycj-2022-0547
    [3]ZHANG Wenchao, WANG Shu, LIANG Zengyou, QIN Bin, LU Haitao, CHEN Xinyuan, LU Wenjie. A study of blast wave protection efficiency of helmet based on air flow field pressure analysis[J]. Explosion And Shock Waves, 2022, 42(11): 113201. doi: 10.11883/bzycj-2021-0411
    [4]YE Zhiwei, CHEN Ming, LI Tong, LU Wenbo, YAN Peng. A calculation method of the peak pressure on borehole wall for low decoupling coefficient charge blasting[J]. Explosion And Shock Waves, 2021, 41(6): 064901. doi: 10.11883/bzcyj-2020-0185
    [5]YE Zhiwei, CHEN Ming, WEI Dong, LU Wenbo, LIU Tao, WU Liang. Experimental study on the peak pressure of borehole wall in decoupling charge blasting[J]. Explosion And Shock Waves, 2021, 41(5): 055201. doi: 10.11883/bzycj-2020-0004
    [6]LI Mei, JIANG Jianwei, WANG Xin. Shock wave propagation characteristics of double layer charge explosion in the air[J]. Explosion And Shock Waves, 2018, 38(2): 367-372. doi: 10.11883/bzycj-2016-0209
    [7]Gao Na, Zhang Yansong, Hu Yiting. Experimental study on methane-air mixtures explosion limits at normal and elevated initial temperatures and pressures[J]. Explosion And Shock Waves, 2017, 37(3): 453-458. doi: 10.11883/1001-1455(2017)03-0453-06
    [8]Yang Guoliang, Cheng Shuaijie, Wang Ping, Li Xuehai, Yan Yugang. Experiment on slotted tube blasting of axial decoupling coefficient charging[J]. Explosion And Shock Waves, 2017, 37(1): 134-139. doi: 10.11883/1001-1455(2017)01-0134-06
    [9]YANG Guo-liang, YANG Ren-shu, JIANG Lin-lin. Pressuredistributionalongboreholewithaxialair-deckchargeblasting[J]. Explosion And Shock Waves, 2012, 32(6): 653-657. doi: 10.11883/1001-1455(2012)06-0653-05
    [10]ZHONG Ming-shou, LONG Yuan, XIE Quan-min, JI Chong, LIU Hao-quan. Effectsofnon-couplingchargecoefficientsonexplosionseismic waveenergyincarbonaterocks[J]. Explosion And Shock Waves, 2011, 31(6): 612-618. doi: 10.11883/1001-1455(2011)06-0612-07
    [11]WU Liang, LU Wen-bo, ZHONG Dong-wang, ZHU Hong-bing. Blastingmechanismofair-deckedchargeinconcretemedium[J]. Explosion And Shock Waves, 2010, 30(1): 58-64. doi: 10.11883/1001-1455(2010)01-0058-07
    [12]SUO Yong-lu, WANG Xiao-lin. Experimental research on the expansion of blast cavity of de-coupling charge in coal[J]. Explosion And Shock Waves, 2005, 25(1): 54-58. doi: 10.11883/1001-1455(2005)01-0054-05
  • Cited by

    Periodical cited type(71)

    1. 闫鹏,张云鹏,周倩倩,杨曦. 基于改进EMD的爆破振动信号降噪方法研究. 振动与冲击. 2025(01): 212-220 .
    2. 张险峰,高亚州,雒德宏,马璐,傅广泽. 海上风电机组塔架微弱振动信号自动化检测. 自动化与仪器仪表. 2025(01): 35-38 .
    3. 薛威,王永东,柏文军,胡志豪,任雨桐,史林猛. 基于VMD-ICA算法的隧道爆破振动信号去噪方法. 工程爆破. 2025(01): 156-166 .
    4. 苏有斌. 基于改进HHT算法的重载铁路信号自动化解调方法设计. 自动化与仪表. 2024(01): 125-129 .
    5. 张孟昕,陈波,刘伟琪,漆一宁,张明. SSA-XGBoost与时空特征选取的大坝变形预测模型. 水力发电学报. 2024(01): 84-98 .
    6. 童晓玲,曾斐宇,江轲,梁磊. 基于CEEMD-MPE-IMPROVED WTD的爆炸振动信号噪声抑制方法. 振动与冲击. 2024(01): 184-192 .
    7. 王子豪,王硕,关博凯,鲍晓华. CEEMDAN与改进形态差值滤波结合的滚动轴承故障诊断. 微特电机. 2024(01): 20-25+30 .
    8. 廖铖,蔡德所,李苗,林金城. 基于光纤陀螺的堆石坝内部沉降分布式监测技术研究. 土木工程学报. 2024(02): 77-86 .
    9. 上官小雨,汤雅莉. 用于视觉传达效果优化的退化图像复原仿真. 计算机仿真. 2024(01): 222-226 .
    10. 赵智强,帕孜来·马合木提,李高原. 逆变器的电容老化故障诊断方法研究. 现代电力. 2024(01): 182-190 .
    11. 夏焰坤,李欣洋,任俊杰,寇坚强. 基于CEEMDAN-HT的永磁同步电机匝间短路振动信号故障特征提取研究. 振动与冲击. 2024(05): 72-81 .
    12. 严志豪,高文学,汪艮忠,胡宇,张声辉,张小军. 连拱隧道中导洞不同起爆位置振动效应研究. 工程爆破. 2024(01): 141-148 .
    13. 钱晓仲. 基于小波包分析的低压配电系统接地故障诊断. 电工技术. 2024(03): 42-44+48 .
    14. 杨孟,李永福,梁云,陈艺征,顾冲时. 基于多层次滤波降噪的IGA-NARX混凝土坝变形预测模型. 水电能源科学. 2024(04): 142-146 .
    15. 李大柱,梁树林,池茂儒,许文天. 基于形态学滤波和CEEMDAN-WVD的车轮失圆诊断. 铁道机车车辆. 2024(02): 8-14 .
    16. 伍福寿,张学民,韩淼,陈进,胡涛,周贤舜,王树英,朱凯. 近接既有隧道爆破激发地震波成分构成及特性研究. 中南大学学报(自然科学版). 2024(04): 1406-1417 .
    17. 辛志军. 大断面通风斜井爆破施工对邻近隧道振动特性的影响. 施工技术(中英文). 2024(09): 47-52+83 .
    18. 曲春刚,朱胜翔,冯正兴. CEEMDAN-SE-WT降噪方法在航空发动机燃油流量信号中的应用. 科学技术与工程. 2024(15): 6525-6533 .
    19. 闫鹏,张云鹏,侯善营,张为为,杨曦. 基于改进EMD-小波包的爆破振动信号降噪方法研究. 振动与冲击. 2024(11): 264-271+287 .
    20. 田婕,张云鹏,闫鹏,孙文诚,杨曦. 基于CEEMD的露天深孔爆破振动信号降噪光滑模型. 爆破. 2024(02): 143-150+159 .
    21. 薛睿,高文学,梅敏,张小军,张军灵. 基于EEMD-HHT的边坡爆破振动信号分析. 市政技术. 2024(07): 101-108 .
    22. 唐斌,池茂儒,赵明花,李大柱,许文天. 基于ICEEMDAN和共振解调的轴承故障检测方法. 铁道机车车辆. 2024(04): 84-91 .
    23. 刘金山. 基于改进EMD的爆破振动信号降噪方法. 工程爆破. 2024(04): 156-164 .
    24. 石佳晨,岳春芳,朱明远,皮李浪. 基于CEEMDAN-改进小波阈值的大坝变形数据处理方法. 水利水电科技进展. 2024(05): 80-86+102 .
    25. 谷宇,苏怀智,张帅,姚可夫,刘明凯,漆一宁. 基于自适应时序分解筛选的大坝变形预测模型. 水利学报. 2024(09): 1045-1057+1070 .
    26. 李士林,朱旋,周冬冬. ICEEMDAN-小波阈值法在谐波信号中的应用. 河北电力技术. 2024(05): 20-26+33 .
    27. 望远福,李云赫,赵岩,范杰林. 隧道爆破振动中掏槽段的波形预测方法. 中国测试. 2024(10): 150-156 .
    28. 杨德志,赵岩,王海龙. 铁路隧道初期支护混凝土爆破累积损伤特征. 混凝土. 2024(10): 40-45 .
    29. 真嘉捷,赖丰文,黄明,李爽,许凯. 基于LightGBM-Informer的盾构隧道管片上浮长时间序列预测模型. 岩土力学. 2024(12): 3791-3801 .
    30. 尚雪义,陈勇,陈结,陈林林,蒲源源. 基于Adaboost_LSTM预测的矿山微震信号降噪方法及应用. 煤炭学报. 2024(11): 4406-4416 .
    31. 崔芷宁,于晓光,孙杰,于喜金,冉子晴,张小龙. 基于CEEMD航空液压管路故障诊断方法研究. 机床与液压. 2023(01): 189-195 .
    32. 杨智中,林军志,汪魁,程梓益,刘攀. 基于CEEMDAN-小波包自适应阈值混凝土声发射信号降噪研究. 振动与冲击. 2023(03): 139-149 .
    33. 李大柱,牛江,梁树林,池茂儒. 基于多尺度时频图与卷积神经网络的车轮故障智能诊断. 铁道科学与工程学报. 2023(03): 1032-1043 .
    34. 杨森,王恒迪,崔永存,李畅,唐元超. 基于改进AFSA的参数优化VMD和ELM的轴承故障诊断. 组合机床与自动化加工技术. 2023(04): 67-70 .
    35. 宋青波,柏皓博,王海龙,赵岩,张奇. 基于CEEMDAN-交叉小波变换的爆破延时识别. 工程爆破. 2023(02): 10-16+24 .
    36. 章芳情,袁方,贺玉,王成城,郭江. 基于NLM-CEEMDAN和样本熵的水电机组振动信号去噪. 中国农村水利水电. 2023(06): 286-294 .
    37. 陆俊杰,刘柱,丁雪兴,丁俊华,高德. 局部特征尺度与小波阈值协同下密封摩擦面AE信号降噪研究. 振动与冲击. 2023(12): 205-211+219 .
    38. 廖胜军,何国建,邢健文,魏呈霖. 高温高速VSP地震信号的面波压制处理. 声学与电子工程. 2023(02): 32-35 .
    39. 宿利平,严志豪,王辉,郭明洋,张小军,高文学. 基于EEMD-HHT的隧道爆破振动信号分析. 施工技术(中英文). 2023(12): 21-26 .
    40. 闫鹏,张云鹏,田婕,王晗. 基于CEEMDAN-K-means算法的爆破振动信号去噪研究. 爆破. 2023(03): 184-190 .
    41. 孙坤,尹晓红. 基于数据去噪和CNN-BiGRU的SO_2排放预测. 电子测量技术. 2023(13): 66-72 .
    42. 司小昆,郭明,赵岩. 下穿隧道爆破振动测试及能量分布研究. 中国测试. 2023(10): 57-63 .
    43. 杨志飞,崔春生,杜桂云,刘双峰,赵海霞. 融合CEEMDAN-GMM和小波阈值方法的爆炸冲击波降噪算法. 弹箭与制导学报. 2023(05): 80-86 .
    44. 杨春杰,李聪聪,刘满仓. 一种塔吊钢丝绳损伤检测信号降噪方法. 西安邮电大学学报. 2023(04): 102-110 .
    45. 高军伟,赵岩,王奔. 立体交叉铁路隧道爆破振动效应的研究. 爆破器材. 2023(06): 39-47 .
    46. 王婷婷,李方,霍雨佳,王振豪,赵万春. 基于AO优化VMD-小波包的岩石破裂声发射信号去噪算法. 采矿与岩层控制工程学报. 2023(06): 82-95 .
    47. 赵民强. 下穿山岭隧道爆破振动效应的数值模拟分析. 科技与创新. 2023(24): 95-97 .
    48. 项荣军,刘传鹏,李胜林,凌天龙. 隧道内部爆破振动传播规律与降振技术研究. 爆破. 2023(04): 82-88+200 .
    49. 赵建恩,赵岩,王海龙. 下穿既有重载铁路隧道支护措施数值模拟研究. 河北建筑工程学院学报. 2023(04): 9-14 .
    50. 刘中飞,王海龙,霍昊,吕良玉,信博研. 铁路隧道爆破对地表振动响应研究. 河北建筑工程学院学报. 2023(04): 15-25+48 .
    51. 刘连生,钟抒亮,易文华,刘伟,杨砚,柴耀光. 基于PEMD的露天边坡不同高程爆破振动信号频谱特征研究. 金属矿山. 2022(01): 148-153 .
    52. 付晓强,俞缙,刘纪峰,杨仁树,戴良玉. 隧道爆破振动信号畸变校正与混沌多重分形特征研究. 振动与冲击. 2022(06): 76-85 .
    53. 魏立恒,倪修能,郭洪雨,孙飞,葛艺超,夏兆平,王国波. 城市越岭长隧道爆破开挖振动影响研究. 爆破. 2022(01): 159-167 .
    54. 万书亭,贾东亮,孙瑞滨,王向东,刘杰,贾伯岩. 基于相关系数特征的输电铁塔螺栓连接完全松动检测方法研究. 中国工程机械学报. 2022(02): 173-177+183 .
    55. 梁娟. 基于粒子群算法的爆破振动速度智能预测方法. 工程爆破. 2022(03): 117-121+136 .
    56. 李伟光,余秋霖,骆春林,孙菁瑶,林守金,龚德明. Savitzky Golay-WPT在滚刀主轴振动信号降噪中的应用. 机床与液压. 2022(14): 159-165 .
    57. 单仁亮,赵岩,王海龙,董捷,仝潇,李兆龙,王东升. 下穿铁路隧道爆破振动衰减规律研究. 爆炸与冲击. 2022(08): 145-159 . 本站查看
    58. 孙继平,余星辰. 基于CEEMD分量样本熵与SVM分类的煤矿瓦斯和煤尘爆炸声音识别方法. 采矿与安全工程学报. 2022(05): 1061-1070 .
    59. 赵岩,王小敬,王海龙,王东升. 交叉隧道爆破振速回归分析及对比研究. 工程爆破. 2022(05): 121-127 .
    60. 周春煦,赵岩. 下穿铁路隧道爆破振动分析及控制方法研究. 中国安全生产科学技术. 2022(11): 133-140 .
    61. 刘杰,王向东,贾伯岩,贾东亮,万书亭. 基于振动特性的铁塔螺栓完全松动检测方法. 科学技术与工程. 2022(32): 14213-14220 .
    62. 付茂盛,耿建,张仰飞. 基于CEEMDAN-LOF的企业能耗异常辨识研究. 机械与电子. 2022(12): 48-52+58 .
    63. 徐雨,郑威,程怡. 基于单通道脑电信号中眼电伪迹去除的方法. 生物医学工程研究. 2022(04): 369-375+416 .
    64. 蔡俊,张翔风. CEEMDAN-小波包联合算法在ECG中的降噪应用. 黑龙江工业学院学报(综合版). 2022(12): 41-49 .
    65. 任文斌,付晓强,俞缙. 小近距隧道台阶法开挖爆破振动信号特征分析. 工程爆破. 2022(06): 119-129 .
    66. 王海龙,柏皓博,赵岩,王彬,王海军. 基于傅里叶分解-小波包分析的爆破信号去噪方法. 爆破. 2021(02): 37-44 .
    67. 王海龙,李帅,赵岩,王晟华. CEEMDAN-小波包联合降噪的优化方法. 爆破器材. 2021(04): 48-53 .
    68. 王海龙,柏皓博,王晟华. 基于FDM的爆破振动信号时频分析. 爆破. 2021(03): 143-151 .
    69. 王海龙,李云赫,赵岩. k值优化VMD-小波包分析联合降噪方法在隧道爆破信号中的应用. 爆破器材. 2021(05): 50-57 .
    70. 张佳,赵岩. 基于CEEMDAN法的隧道爆破信号趋势项去除. 爆破器材. 2021(06): 58-64 .
    71. 宋青波,张奇,单洪涛,王海龙,赵岩. 交叉隧道施工安全监测及控制技术研究. 河北建筑工程学院学报. 2021(03): 52-59 .

    Other cited types(47)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article Metrics

    Article views (4301) PDF downloads(314) Cited by(118)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return