Volume 37 Issue 6
Sep.  2017
Turn off MathJax
Article Contents
Lu Qiang, Wang Zhanjiang, Ding Yang, Liu Xiaoxin, Guo Zhiyun, Wu Yujiao. Characteristics of frequency response for linear viscoelastic spherical divergent stress waves[J]. Explosion And Shock Waves, 2017, 37(6): 1023-1030. doi: 10.11883/1001-1455(2017)06-1023-08
Citation: Lu Qiang, Wang Zhanjiang, Ding Yang, Liu Xiaoxin, Guo Zhiyun, Wu Yujiao. Characteristics of frequency response for linear viscoelastic spherical divergent stress waves[J]. Explosion And Shock Waves, 2017, 37(6): 1023-1030. doi: 10.11883/1001-1455(2017)06-1023-08

Characteristics of frequency response for linear viscoelastic spherical divergent stress waves

doi: 10.11883/1001-1455(2017)06-1023-08
  • Received Date: 2016-04-21
  • Rev Recd Date: 2017-01-07
  • Publish Date: 2017-11-25
  • In this study the transfer functions of the mechanical quantities (i.e. the particle velocity, the particle displacement, the stress and the strain, etc.) at different propagation distances were analytically presented based on the solutions of the linear viscoelastic spherical stress wave in the Laplace domain, The propagating characteristics of the frequency response function for the particle velocity were examined with the standard linear solid model taken as an example. The results reveal that the high-frequency response of the frequency response function for the particle velocity in viscoelastic medium is less than that of the low-frequency response with the increase of the propagation distance; in an ideal elastic medium, however, it is always greater than that of the low-frequency response. With the cavity explosion with the elastic radius of 0.025 m taken as an example, the evolution of the wave form of the particle velocity was calculated using the numerical method of the inverse Laplace transform. The results reveal that the attenuation curve of the peak value for the particle velocity in viscoelastic medium falls in between the attenuation curve of the the peak value for the particle velocity in an ideal elastic medium and the attenuation curve of the amplitude of the strong discontinuity for the particle velocity in viscoelastic medium.
  • loading
  • [1]
    Blake F G. Spherical wave propagation in solid media[J]. Journal of the Acoustical Society of America, 1952, 24(2):211-215. doi: 10.1121/1.1906882
    [2]
    Selberg H L. Transient compression waves from spherical and cylindrical cavities[J]. Arkiv for Fysik, 1952, 5(1/2):97-108. http://www.ams.org/mathscinet-getitem?mr=68427
    [3]
    Rodean H C. Elastic wave radiation from spherical sources. UCRL-52867[R]. Lawrence Livermore Laboratory, 1979.
    [4]
    Garg S K. Spherical elastic-plastic waves[J]. Journal of Applied Mathematics and Physics, 1968, 19(2):243-251. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027028260/
    [5]
    Garg S K. Numerical solutions for spherical elastic-plastic wave propagation[J]. Journal of Applied Mathematics and Physics, 1968, 19(5):778-787.
    [6]
    李孝兰.空腔解耦爆炸实验研究的理论基础(Ⅰ)[J].爆炸与冲击, 2000, 20(2):186-192. doi: 10.3321/j.issn:1001-1455.2000.02.016

    Li Xiaolan. Basic theory of decoupled explosions in cavities(Ⅰ)[J]. Explosions and Shock Waves, 2000, 20(2):186-192. doi: 10.3321/j.issn:1001-1455.2000.02.016
    [7]
    李孝兰.空腔解耦爆炸实验研究的理论基础(Ⅱ)[J].爆炸与冲击, 2000, 20(3):283-288. doi: 10.3321/j.issn:1001-1455.2000.03.016

    Li Xiaolan. Basic theory of decoupled explosions in cavities(Ⅱ)[J]. Explosions and Shock Waves, 2000, 20(3):283-288. doi: 10.3321/j.issn:1001-1455.2000.03.016
    [8]
    卢强, 王占江, 门朝举, 等.有机玻璃中球形应力波传播的分析[J].爆炸与冲击, 2013, 33(6):561-566. doi: 10.3969/j.issn.1001-1455.2013.06.001

    Lu Qiang, Wang Zhanjiang, Men Chaoju, et al. Analysis of spherical stress save propagating in PMMA[J]. Explosion and Shock Waves, 2013, 33(6):561-566. doi: 10.3969/j.issn.1001-1455.2013.06.001
    [9]
    Perzyna P. On the propagation of stress waves in a rate sensitive plastic medium[J]. Journal of Applied Mathematics and Physics, 1963, 14(3):241-261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/1545968309350595
    [10]
    Phillips A, Zabinski M P. Spherical wave propagation in a viscoplastic medium[J]. Ingenieur Archiv, 1972, 41(6):367-376. doi: 10.1007/BF00533139
    [11]
    Zabinski M P, Phillips A. Spherical wave propagation in a viscoplastic medium-the case of unloading[J]. Acta Mechanica, 1974, 20(3):153-166. doi: 10.1007/BF01175921
    [12]
    Koshelev E A. Spherical stress wave propagation during an explosion in a viscoelastic medium[J]. Soviet Mining, 1988, 24(6):541-546. doi: 10.1007/BF02498612
    [13]
    Banerjee S, Roychoudhuri S K. Spherically symmetric thermo-visco-elastic waves in a visco-elastic medium with a spherical cavity[J]. Computers & Mathematics with Applications, 1995, 30(1):91-98. http://www.sciencedirect.com/science/article/pii/089812219500070F
    [14]
    Wang L L, Lai H W, Wang Z J, et al. Studies on nonlinear visco-elastic spherical waves by characteristics analyses and its application[J]. International Journal of Impact Engineering, 2013, 55(1):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=134de230d4e5f2fc5147283cf1fdc6d5
    [15]
    赖华伟, 王占江, 杨黎明, 等.线性黏弹性球面波的特征线分析[J].爆炸与冲击, 2013, 33(1):1-10. doi: 10.3969/j.issn.1001-1455.2013.01.001

    Lai Huawei, Wang Zhanjiang, Yang Liming, et al. Characteristics analyses of linear viscoelastic spherical waves[J]. Explosion and Shock Waves, 2013, 33(1):1-10. doi: 10.3969/j.issn.1001-1455.2013.01.001
    [16]
    赖华伟, 王占江, 杨黎明, 等.由球面波径向质点速度实测数据反演材料黏弹性本构参数[J].高压物理学报, 2013, 27(2):245-252. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201302014.htm

    Lai Huawei, Wang Zhanjiang, Yang Liming, et al. Inversion of constitutive parameters for viscoelastic materials from radial velocity measurements of spherical wave experiments[J]. Chinese Journal of High Pressure Physics, 2013, 27(2):245-252. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201302014.htm
    [17]
    卢强, 王占江, 李进, 等.球面波加载下黄土线黏弹性本构关系[J].岩土力学, 2012, 33(11):3292-3298. http://d.old.wanfangdata.com.cn/Periodical/ytlx201211015

    Lu Qiang, Wang Zhanjiang, Li Jin, et al. Linear viscoelastic constitutive relation of loess under spherical stress wave[J]. Rock and Soil Mechanics, 2012, 33(11):3292-3298. http://d.old.wanfangdata.com.cn/Periodical/ytlx201211015
    [18]
    卢强, 王占江, 王礼立, 等.基于ZWT方程的线黏弹性球面波分析[J].爆炸与冲击, 2013, 33(5):463-470. doi: 10.3969/j.issn.1001-1455.2013.05.003

    Lu Qiang, Wang Zhanjiang, Wang Lili, et al. Analysis of linear visco-elastic spherical wave based on ZWT constitutive equation[J]. Explosion and Shock Waves, 2013, 33(5):463-470. doi: 10.3969/j.issn.1001-1455.2013.05.003
    [19]
    卢强, 王占江.标准线性固体材料中球面应力波传播特征研究[J].物理学报, 2015, 64(10):108301. doi: 10.7498/aps.64.108301

    Lu Qiang, Wang Zhanjiang. Characteristics of spherical stress wave propagation in the standard linear solid material[J]. Acta Physica Sinica, 2015, 64(10):108301. doi: 10.7498/aps.64.108301
    [20]
    Lu Qiang, Wang Zhanjiang. Studies of the propagation of viscoelastic spherical divergent stress waves based on the generalized Maxwell model[J]. Journal of Sound and Vibration, 2016, 371(1):183-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cfb4e6191581659451b1232761f3f7a9
    [21]
    Crump K S. Numerical inversion of Laplace transforms using a Fourier series approximation[J]. Journal of the Association for Computing Machinery, 1976, 23(1):89-96. doi: 10.1145/321921.321931
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (4376) PDF downloads(274) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return