QIU Jiadong, LI Diyuan, LI Xibing, CHENG Tengjiao, LI Chongjin. Effect of pre-existing flaws on spalling fracture of granite[J]. Explosion And Shock Waves, 2018, 38(3): 665-670. doi: 10.11883/bzycj-2016-0310
Citation: Tan Mengting, Zhang Xianfeng, Ge Xiankun, Liu Chuang, Xiong Wei. Theoretical model of interface defeat/penetration transition velocity of ceramic armor impacted by long-rod projectile[J]. Explosion And Shock Waves, 2017, 37(6): 1093-1100. doi: 10.11883/1001-1455(2017)06-1093-08

Theoretical model of interface defeat/penetration transition velocity of ceramic armor impacted by long-rod projectile

doi: 10.11883/1001-1455(2017)06-1093-08
  • Received Date: 2016-03-24
  • Rev Recd Date: 2016-08-18
  • Publish Date: 2017-11-25
  • In this study a theoretical model was established to predict the interface defeat/penetration transition velocity of a ceramic armor impacted by a long-rod projectile. Predications of the transition velocity were obtained by measuring the stress inside the target and then applying it in turn to the conical crack and the wing crack propagation theory. After that, a theoretical model consisting of the conical and the wing crack propagation theory was presented. The results show that the theoretical model can reasonably well describe the interface defeat/penetration transition process. The interface defeat/penetration transition velocity calculated by the theoretical model agrees well with the experimental results from the previously published literature. The conical crack propagation dominates the interface defeat/penetration transition process when the projectile radius is small, while the wing crack dominates the transition when the projectile radius is large.
  • [1]
    陈小伟, 陈裕泽.脆性陶瓷靶高速侵彻/穿甲动力学的研究进展[J].力学进展, 2006, 36(1):85-102. doi: 10.3321/j.issn:1000-0992.2006.01.014

    Chen Xiaowei, Chen Yuze.Review on the penetration/perforation of ceramic targets[J].Advances in Mechanics, 2006, 36(1):85-102. doi: 10.3321/j.issn:1000-0992.2006.01.014
    [2]
    Hauver G E, Netherwood P H, Benck R F, et al.Ballistic performance of ceramic targets[C]//Proceedings of Army Symposium on Solid Mechanics.Plymouth, MA, USA, 1993: 23-34.
    [3]
    Lundberg P, Renström R, Andersson O.Influence of length scale on the transition from interface defeat to penetration in unconfined ceramic targets[J].Journal of Applied Mechanics, 2013, 80(3):031804. http://adsabs.harvard.edu/abs/2013JAM....80c1804L
    [4]
    Lundberg P, Renström R, Lundberg B.Impact of metallic projectiles on ceramic targets:transition between interface defeat and penetration[J].International Journal of Impact Engineering, 2000, 24(3):259-275. doi: 10.1016/S0734-743X(99)00152-9
    [5]
    Lundberg P, Lundberg B.Transition between interface defeat and penetration for tungsten projectiles and four silicon carbide materials[J].International Journal of Impact Engineering, 2005, 31(7):781-792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1ef82b777d826464dfa986f30f63e8da
    [6]
    Anderson Jr C E, Behner T, Holmquist T J, et al.Interface defeat of long rods impacting oblique silicon carbide[R].Southwest Research INST San Antonio TX, 2011.
    [7]
    Anderson C E, Walker J D.An analytical model for dwell and interface defeat[J].International Journal of Impact Engineering, 2005, 31(9):1119-1132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7d86108fce5798e41c7c7d3d04d3ed44
    [8]
    Li J C, Chen X W, Ning F.Comparative analysis on the interface defeat between the cylindrical and conical-nosed long rods[J].International Journal of Protective Structures, 2014, 5(1):21-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ba0c9474c20983355cec425e5135ff9
    [9]
    Li J C, Chen X W, Ning F, et al.On the transition from interface defeat to penetration in the impact of long rod onto ceramic targets[J].International Journal of Impact Engineering, 2015, 83:37-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2ac35acfc55b7dc05596fd690b81ff4e
    [10]
    李继承, 陈小伟.尖锥头长杆弹侵彻的界面击溃分析[J].力学学报, 2011, 43(1):63-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000219931

    Li Jicheng, Chen Xiaowei.Theoretical analysis on the interface defeat of a conical-nosed projectile penetration[J].Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1):63-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000219931
    [11]
    李继承, 陈小伟.柱形长杆弹侵彻的界面击溃分析[J].爆炸与冲击, 2011, 31(2):141-147. http://www.bzycj.cn/CN/abstract/abstract8646.shtml

    Li Jicheng, Chen Xiaowei.Theoretical analysis on the interface defeat of a long rod penetration[J].Explosion and Shock Waves, 2011, 31(2):141-147. http://www.bzycj.cn/CN/abstract/abstract8646.shtml
    [12]
    Holmquist T J, Johnson G R.Modeling prestressed ceramic and its effect on ballistic performance[J].International Journal of Impact Engineering, 2005, 31(2):113-127. doi: 10.1016/j.ijimpeng.2003.11.002
    [13]
    Serjouei A.Modelling and analysis of bi-layer ceramic-metal protective structures[D].Singapore: Nanyang Technological University, 2014.
    [14]
    Chi R, Serjouei A, Sridhar I, et al.Pre-stress effect on confined ceramic armor ballistic performance[J].International Journal of Impact Engineering, 2015, 84:159-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9982a282644edd198a87275b9be74661
    [15]
    Johnson K L.Contact mechanics[M].Cambridge, UK:Cambridge University Press, 1985:452.
    [16]
    Fischer-Cripps A C.Introduction to contact mechanics[M].Springer Berlin, 2010:241.
    [17]
    LaSalvia J C.A predictive model for the dwell/penetration transition phenomenon[C]//Proceeding of the 22th International Symposium on Ballistics.Canada, 2005, 2: 717-725.
    [18]
    Shih J C.Dynamic deformation of silicon carbide[D].San Diego: University of California, 1998.
    [19]
    Horii H, Nemat-Nasser S.Brittle failure in compression:splitting, faulting and brittle-ductile transition[J].Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 1986, 319(1549):337-374. doi: 10.1098-rsta.1986.0101/
    [20]
    LaSalvia J C, Horwath E J, Rapacki E J, et al.Microstructural and micromechanical aspects of ceramic/long-rod projectile interactions: dwell/penetration transitions[C]//Proceeding of Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena.New York, 2001: 437-446.
    [21]
    Milman Y V, Chugunova S I.Mechanical properties, indentation and dynamic yield stress of ceramic targets[J].International Journal of Impact Engineering, 1999, 23(1):629-638. doi: 10.1016/S0734-743X(99)00109-8
    [22]
    Behner T, Anderson Jr C E, Holmquist T J, et al.Penetration dynamics and interface defeat capability of silicon carbide against long rod impact[J].International Journal of Impact Engineering, 2011, 38(6):419-425. doi: 10.1016/j.ijimpeng.2010.10.011
  • Cited by

    Periodical cited type(8)

    1. 朱建波,毕硕,孙家鑫,暴伟越,廖志毅,王钥. 动荷载作用下不同应力波透射性结构面围岩层裂特性. 采矿与岩层控制工程学报. 2024(01): 91-102 .
    2. 王世鸣,白云帆,王嘉琪,吴秋红. 应力波斜入射下砂岩层裂破坏的试验研究. 振动与冲击. 2024(14): 201-210 .
    3. 罗丹旎,卢思航,苏国韶,陶洪辉. 含预制单裂隙花岗岩的真三轴单面临空岩爆试验研究. 岩土力学. 2023(01): 75-87 .
    4. 黄冬梅,朱盈盈,乔书昱,邢大千,王新照. 含孔洞-双裂隙红砂岩宏细观损伤特征数值试验研究. 山东科技大学学报(自然科学版). 2023(04): 32-42 .
    5. 范利丹,徐峰,余永强,张志伟,余雳伟,周桂杰. 一维静载与循环冲击共同作用下砂岩动态力学特性试验研究. 高压物理学报. 2022(03): 48-59 .
    6. 田诺成,王志亮,熊峰,刘志义. 循环冲击荷载下轴压对花岗岩动力学特性的影响. 哈尔滨工业大学学报. 2021(05): 156-164 .
    7. 肖定军,朱哲明,蒲传金,陆路,胡荣. 爆炸荷载下青砂岩动态起裂韧度的测试方法. 爆炸与冲击. 2020(02): 78-91 . 本站查看
    8. 唐礼忠,刘昌,王春,陈英毅,申帆. 频繁动力扰动对围压卸载中高储能岩体的动力学影响. 爆炸与冲击. 2019(06): 144-154 . 本站查看

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (4445) PDF downloads(510) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return