Volume 35 Issue 3
Jun.  2015
Turn off MathJax
Article Contents
Deng Xiao-qiu, Li Zhi-qiang, Zhou Zhi-wei, Wang Zhi-hua, Yao Xiao-hu. One-dimensional yield behavior of MDYB-3 polymethyl methacrylate at different strain rates[J]. Explosion And Shock Waves, 2015, 35(3): 312-319. doi: 10.11883/1001-1455-(2015)03-0312-08
Citation: Deng Xiao-qiu, Li Zhi-qiang, Zhou Zhi-wei, Wang Zhi-hua, Yao Xiao-hu. One-dimensional yield behavior of MDYB-3 polymethyl methacrylate at different strain rates[J]. Explosion And Shock Waves, 2015, 35(3): 312-319. doi: 10.11883/1001-1455-(2015)03-0312-08

One-dimensional yield behavior of MDYB-3 polymethyl methacrylate at different strain rates

doi: 10.11883/1001-1455-(2015)03-0312-08
  • Received Date: 2013-11-11
  • Rev Recd Date: 2014-03-04
  • Publish Date: 2015-05-25
  • Several groups of compression tests at different strain rates(10-3~3 000 s-1)are carried out for MDYB-3 polymethyl methacrylate.Yield stress in the quasi-static tests and peak stress in the dynamic tests are obtained.Compression tests are performed along normal direction and parallel directions of samples to analyze the effect of orientation stretching on yield stress.Ree-Eyring model and Cooperative model are revised to describe the yield behavior of directional PMMA.Viscoplastic behaviors after yield are attempted to be described using Johnson-Cook model.The results of Cooperative yield model are shown to be closer to the test results than those of Ree-Eyring yield model.Cooperative yield model can describe the yield stress of quasi-static tests accurately.Peak stress in dynamic compression test is failure stress, which means that samples fail before yield at the strain rate above 1 500 s-1.The fitting results reveal that Johnson-Cook model can describe a single stress-strain curve well, but it cannot predict the dependence of strain rate.
  • loading
  • [1]
    Li Zhou-hua, Lambros J. Strain rate effects on the thermomechanical behavior of polymers[J]. International Journal of Solids and Structures, 2001, 38(20): 3549-3562. doi: 10.1016/S0020-7683(00)00223-7
    [2]
    Chen W, Lu F, Cheng M. Tension and compression tests of two polymers under quasi-static and dynamic loading[J]. Polymer Testing, 2002, 21(2): 113-121. doi: 10.1016/S0142-9418(01)00055-1
    [3]
    Eyring H. Viscosity, plasticity, and diffusion as examples of absolute reaction rates[J]. The Journal of Chemical Physics, 1936, 4(4): 283-291. doi: 10.1063/1.1749836
    [4]
    Taikyue R, Eyring H. Theory of non-Newtonian flow: Ⅰ: Solid plastic system[J]. Journal of Applied Physics, 1955, 26(7): 793-800. doi: 10.1063/1.1722098
    [5]
    Haward R N, Thackray G. The use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics[J]. Proceedings of the Royal Society of London A, 1968, 302(1471): 453-472.
    [6]
    Argon A S. A theory for the low-temperature plastic deformation of glassy polymers[J]. Philosophical Magazine, 1973, 28(4): 839-865. doi: 10.1080/14786437308220987
    [7]
    Boyce M C, Parks D M, Argon A S. Large inelastic deformation of glassy polymers: PartⅠ: Rate dependent constitutive model[J]. Mechanics of Materials, 1988, 7(1): 15-33. doi: 10.1016/0167-6636(88)90003-8
    [8]
    Arruda E M, Boyce M C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389-412. doi: 10.1016/0022-5096(93)90013-6
    [9]
    Wu P D, Giessen E V D. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(3): 427-456. doi: 10.1016/0022-5096(93)90043-F
    [10]
    Anand L, Gurtin M E. A theory of amorphous solids undergoing large deformations, with application to polymeric glasses[J]. International Journal of Solids and Structures, 2003, 40(6): 1465-1487. doi: 10.1016/S0020-7683(02)00651-0
    [11]
    王礼立, Pluvinage G, Labibes K.冲击载荷下高聚物动态本构关系对粘弹性波传播特性的影响[J].宁波大学学报:理工版, 1995, 8(3): 30-57.

    Wang Li-li, Puvinage G, Labibes K. The influence of dynamic constitutive relations of polymers at impact loading on the viscoelastic wave propagation character[J]. Journal of Ningbo University: Natural Science and Engineering Edition, 1995, 8(3): 30-57.
    [12]
    吴衡毅, 马钢, 夏源明. PMMA低、中应变率单向拉伸力学性能的实验研究[J].实验力学, 2005, 20(2): 193-199.

    Wu Heng-yi, Ma Gang, Xia Yuan-ming. Experimental study on mechanical properties of PMMA under unidirectional tensile at low and intermediate strain rates[J]. Journal of Experimental Mechanics, 2005, 20(2): 193-199.
    [13]
    Bauwens C C, Bauwens J C, Homès G. Tensile yield-stress behavior of glassy polymers[J]. Journal of Polymer Science Part A-2: Polymer Physics, 1969, 7(4): 735-742. doi: 10.1002/pol.1969.160070411
    [14]
    Fotheringham D G, Cherry B W. The role of recovery forces in the deformation of linear polyethylene[J]. Journal of Materials Science, 1978, 13(5): 951-964. doi: 10.1007/BF00544690
    [15]
    Povolo F, Hermida E B. Phenomenological description of strain rate and temperature-dependent yield stress of PMMA[J]. Journal of Applied Polymer Science, 1995, 58(1): 55-68. doi: 10.1002/app.1995.070580106
    [16]
    Richeton J, Ahzi S, Daridon L, et al. A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures[J]. Polymer, 2005, 46(16): 6035-6043. doi: 10.1016/j.polymer.2005.05.079
    [17]
    Richeton J, Ahzi S, Vecchio K S, et al. Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress[J]. International Journal of Solids and Structures, 2006, 43(7/8): 2318-2335.
    [18]
    董绍胜, 魏月贞, 白永平, 等.耐热有机玻璃的研制[J].高分子材料科学与工程, 2000, 16(1): 173-175.

    Dong Shao-sheng, Wei Yue-zhen, Bai Yong-ping, et al. Study on the heat resistant PMMA[J]. Polymer Materials Science and Engineering, 2000, 16(1): 173-175.
    [19]
    胡昌明, 贺红亮, 胡时胜. 45号钢的动态力学性能研究[J].爆炸与冲击, 2003, 23(2): 188-192. http://www.cqvip.com/Main/Detail.aspx?id=7672613

    Hu Chang-ming, He Hong-liang, Hu Shi-sheng. A study on dynamic mechancial behaviors of 45 steel[J]. Explosion and Shock Waves, 2003, 23(2): 188-192. http://www.cqvip.com/Main/Detail.aspx?id=7672613
    [20]
    张宏建, 温卫东, 崔海涛, 等.不同温度下IC10合金的本构关系[J].航空学报, 2008, 29(2): 499-504.

    Zhang Hong-jian, Wen Wei-dong, Cui Hai-tao, et al. Constitutive analysis of alloy IC10 at different temperatures[J]. Acta Aeronautica Et Astronautica Sinica, 2008, 29(2): 499-504.
    [21]
    林木森, 庞宝君, 张伟, 等. 5A06铝合金的动态本构关系实验[J].爆炸与冲击, 2009, 29(3): 306-311.

    Lin Mu-sen, Pang Bao-jun, Zang Wei, et al. Experimental investigation on a dynamic constitutive relationship of 5A06 Al alloy[J]. Explosion and Shock Waves, 2009, 29(3): 306-311.
    [22]
    Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]∥Proceedings of the 7th International Symposium on Ballistics. Netherlands: International Ballistics Committee, 1983: 541-547.
    [23]
    《中国航空材料手册》编辑委员会.中国航空材料手册[M]. 2版.北京: 中国标准出版社, 2001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (4413) PDF downloads(838) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return