YE Zhiwei, CHEN Ming, LI Tong, LU Wenbo, YAN Peng. A calculation method of the peak pressure on borehole wall for low decoupling coefficient charge blasting[J]. Explosion And Shock Waves, 2021, 41(6): 064901. doi: 10.11883/bzcyj-2020-0185
Citation: YE Zhiwei, CHEN Ming, LI Tong, LU Wenbo, YAN Peng. A calculation method of the peak pressure on borehole wall for low decoupling coefficient charge blasting[J]. Explosion And Shock Waves, 2021, 41(6): 064901. doi: 10.11883/bzcyj-2020-0185

A calculation method of the peak pressure on borehole wall for low decoupling coefficient charge blasting

doi: 10.11883/bzcyj-2020-0185
  • Received Date: 2020-06-08
  • Rev Recd Date: 2020-09-30
  • Available Online: 2021-05-13
  • Publish Date: 2021-06-05
  • The peak pressure on a borehole wall is an important parameter for the analysis of rock blasting rupture and the non-fluid solid coupling explosion impact dynamic response. Based on the relevant research of calculation methods for the peak pressure on the borehole wall for contour blasting, the interaction between the air shock waves and the borehole wall during low decoupling coefficient charge blasting was theoretically analyzed, and the influencing factors of pressure increase ratio were obtained by fully considering the process of air shock wave propagation and detonation product expansion. The parameters of detonation products were used instead of those of shock wave products in theoretical derivation. The single-hole finite element blasting model with radial decoupling charge for air medium was established, and the peak pressure of the borehole wall after single-point detonation of explosives was studied under the combination conditions of multiple low decoupling coefficient charge structure commonly used in engineering blasting. Moreover, the pressure increase ratio which was the ratio of the peak pressure on the borehole wall to the quasi-static isentropic expansion pressure of explosion gas was obtained under the corresponding conditions. The results show that in the process of explosive blasting with a low decoupling coefficient, there is no separation of air shock waves and detonation products, the parameters of the detonation products have a significant effect on the parameters after air shock waves, which in turn affects the interaction between the air shock waves and the borehole wall. It reveals the essential difference between the calculation methods for the peak pressure on the borehole wall in low decoupling coefficient charge blasting and contour blasting. In addition, the propagation of the axial detonation wave in the cylindrical charge structure causes a superposition effect when the air shock wave impacts the borehole wall, and the peak pressure increases accordingly. Through statistical analysis of the relationship between the pressure increase ratio and the decoupling coefficient under different explosive types and different rock types, it is found that the pressure increase ratio increases approximately linearly with the increase of the decoupling coefficient. Based on the the results of theoretical derivation and the commonly used calculation methods for the peak pressure on the borehole wall, a method for calculating the peak pressure on the borehole wall was proposed for low decoupling coefficient charge blasting by considering the effects of explosive characteristics, medium conditions of the borehole wall, and decoupling coefficient on the pressure increase ratio after the air shock wave colliding with the borehole wall.
  • [1]
    刘云川, 汪旭光, 刘连生, 等. 不耦合装药条件下炮孔初始压力计算的能量方法 [J]. 中国矿业, 2009, 18(6): 104–107, 110. DOI: 10.3969/j.issn.1004-4051.2009.06.031.

    LIU Y C, WANG X G, LIU L S, et al. An energy method for calculate borehole pressure under decoupled charging [J]. China Mining Magazine, 2009, 18(6): 104–107, 110. DOI: 10.3969/j.issn.1004-4051.2009.06.031.
    [2]
    梁为民, LIU H Y, 周丰峻. 不耦合装药结构对岩石爆破的影响 [J]. 北京理工大学学报, 2012, 32(12): 1215–1218, 1228. DOI: 10.3969/j.issn.1001-0645.2012.12.002.

    LIANG W M, LIU H Y, ZHOU F J. Influence of air-decoupling charge on rock blasting [J]. Transactions of Beijing Institute of Technology, 2012, 32(12): 1215–1218, 1228. DOI: 10.3969/j.issn.1001-0645.2012.12.002.
    [3]
    朱瑞赓, 王雪峰. 不耦合装药爆破孔壁压力的计算(一) [J]. 爆破, 1990(3): 1–4.

    ZHU R G, WANG X F. Calculation of blasthole wall pressure of de-coupled charges [J]. Blasting, 1990(3): 1–4.
    [4]
    万元林, 王树仁. 关于空气不偶合装药初始冲击压力计算的分析 [J]. 爆破, 2001, 18(1): 13–15. DOI: 10.3963/j.issn.1001-487X.2001.01.004.

    WAN Y L, WANG S R. Analyse of impact pressure about de-coupling charge [J]. Blasting, 2001, 18(1): 13–15. DOI: 10.3963/j.issn.1001-487X.2001.01.004.
    [5]
    李玉民, 倪芝芳. 不耦合装药岩石冲击波参量的极曲线方法 [J]. 岩石力学与工程学报, 1998, 17(1): 76–80. DOI: 10.3321/j.issn:1000-6915.1998.01.011.

    LI Y M, NI Z F. The polar curve method to calculate the parameters of shock wave in rock blasting with uncoupled charge [J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(1): 76–80. DOI: 10.3321/j.issn:1000-6915.1998.01.011.
    [6]
    朱振海, 曲广建, 孙强, 等. 不耦合装药爆炸应力场的动光弹研究 [J]. 爆炸与冲击, 1991, 11(3): 252–257.

    ZHU Z H, QU G J, SUN Q, et al. Dynamic photoelastic investigation of the action of decouple [J]. Explosion and Shock Waves, 1991, 11(3): 252–257.
    [7]
    FELDGUN V R, KARINSKI Y S, YANKELEVSKY D Z. Experimental simulation of blast loading on structural elements using rarefaction waves-theoretical analysis [J]. International Journal of Impact Engineering, 2017, 102: 86–101. DOI: 10.1016/j.ijimpeng.2016.12.010.
    [8]
    SAHARAN M R, MITRI H S. Numerical procedure for dynamic simulation of discrete fractures due to blasting [J]. Rock Mechanics and Rock Engineering, 2008, 41(5): 641–670. DOI: 10.1007/s00603-007-0136-9.
    [9]
    YILMAZ O, UNLU T. Three dimensional numerical rock damage analysis under blasting load [J]. Tunnelling and Underground Space Technology, 2013, 38: 266–278. DOI: 10.1016/j.tust.2013.07.007.
    [10]
    YI C P, JOHANSSON D, GREBERG J. Effects of in-situ stresses on the fracturing of rock by blasting [J]. Computers and Geotechnics, 2018, 104: 321–330. DOI: 10.1016/j.compgeo.2017.12.004.
    [11]
    HENRYCH J. The dynamics of explosion and its use [M]. Amsterdam: Elsevier, 1979.
    [12]
    钮强. 岩石爆破机理[M]. 沈阳: 东北工学院出版社, 1990: 18−19.
    [13]
    陈明, 刘涛, 叶志伟, 等. 轮廓爆破孔壁压力峰值计算方法 [J]. 爆炸与冲击, 2019, 39(6): 064202. DOI: 10.11883/bzycj-2018-0171.

    CHEN M, LIU T, YE Z W, et al. Calculation methods for peak pressure on borehole wall of contour blasting [J]. Explosion and Shock Waves, 2019, 39(6): 064202. DOI: 10.11883/bzycj-2018-0171.
    [14]
    罗兴柏, 张玉令, 丁玉奎. 爆炸及其防护简明教程[M]. 北京: 国防工业出版社, 2016: 254−259.
    [15]
    宁建国, 王成, 马天宝. 爆炸与冲击动力学[M]. 北京: 国防工业出版社, 2010: 110−112.
    [16]
    周霖, 张向荣. 炸药爆炸能量转换原理及应用[M]. 北京: 国防工业出版社, 2015: 136−141.
    [17]
    Livermore Software Technology Corporation. LS-DYNA theoretical manual [M]. California: Livermore Software Technology Corporation, 2003: 1012−1013.
    [18]
    夏祥, 李海波, 李俊如, 等. 岭澳核电站二期工程基岩爆破安全阈值分析 [J]. 岩土力学, 2008, 29(11): 2945–2951, 2956. DOI: 10.3969/j.issn.1000-7598.2008.11.010.

    XIA X, LI H B, LI J R, et al. Research on vibration safety threshold for rock under blasting excavation [J]. Rock and Soil Mechanics, 2008, 29(11): 2945–2951, 2956. DOI: 10.3969/j.issn.1000-7598.2008.11.010.
    [19]
    刘军. 岩体在冲击载荷作用下的各向异性损伤模型及其应用 [J]. 岩石力学与工程学报, 2004, 23(4): 635–640. DOI: 10.3321/j.issn:1000-6915.2004.04.020.

    LIU J. Anisotropic damage model and its application to rock materials under impact load [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 635–640. DOI: 10.3321/j.issn:1000-6915.2004.04.020.
  • Relative Articles

    [1]MA Sizhou, LIU Kewei, YANG Jiacai, LI Xudong. Size distribution characteristics of blast-induced rock fragmentation under decoupled charge structures[J]. Explosion And Shock Waves, 2024, 44(4): 045201. doi: 10.11883/bzycj-2023-0358
    [2]ZHANG Zhifan, LI Hailong, ZHANG Guiyong, ZONG Zhi, JIANG Yichen. Action time sequence of underwater explosion shock waves and shaped charge projectiles[J]. Explosion And Shock Waves, 2023, 43(10): 102201. doi: 10.11883/bzycj-2022-0397
    [3]GUO Hongzhan, ZHANG Yan, WANG Xiaorong. Explosion pressure characteristics of hydrogen-methane-ethanol mixtures[J]. Explosion And Shock Waves, 2023, 43(12): 125403. doi: 10.11883/bzycj-2023-0224
    [4]WANG Bo, YANG Jianbo, YAO Ligang, HE Yangyang, LYU Huayi, TANG Jisi, XU Shucai, ZHANG Jinhuan. Blast injuries to human lung induced by blast shock waves[J]. Explosion And Shock Waves, 2022, 42(12): 122201. doi: 10.11883/bzycj-2022-0173
    [5]HUANG Chao, ZHANG Pan, ZENG Fan, XU Weizheng, WANG Jie, LIU Na. A method for adjusting and controlling underwater explosion shock wave[J]. Explosion And Shock Waves, 2022, 42(8): 083201. doi: 10.11883/bzycj-2021-0450
    [6]ZHENG Jian, LU Fangyun, CHEN Rong. Shock wave characteristics in a conical water explosion shock tube under cylindrical charge condition[J]. Explosion And Shock Waves, 2021, 41(10): 103201. doi: 10.11883/bzycj-2020-0316
    [7]LI Tong, CHEN Ming, YE Zhiwei, LU Wenbo, WEI Dong. Study on the energy transfer efficiency of explosive blasting with different coupling medium[J]. Explosion And Shock Waves, 2021, 41(6): 062201. doi: 10.11883/bzycj-2020-0381
    [8]YE Zhiwei, CHEN Ming, WEI Dong, LU Wenbo, LIU Tao, WU Liang. Experimental study on the peak pressure of borehole wall in decoupling charge blasting[J]. Explosion And Shock Waves, 2021, 41(5): 055201. doi: 10.11883/bzycj-2020-0004
    [9]LI Xiaobin, ZHANG Ruijie, CUI Liwei, ZHANG Qingli. Coupling analysis of explosion pressure and free radical change during methane explosion inhibited by urea[J]. Explosion And Shock Waves, 2020, 40(3): 032101. doi: 10.11883/bzycj-2019-0090
    [10]CHEN Ming, LIU Tao, YE Zhiwei, LU Wenbo, YAN Peng. Calculation methods for peak pressure on borehole wall of contour blasting[J]. Explosion And Shock Waves, 2019, 39(6): 064202. doi: 10.11883/bzycj-2018-0171
    [11]FU Rongyao, SUN Yaohong, XU Xuzhe, YAN Ping. Effect of hydrostatic pressure on fracture of rock subjected to plasma impact[J]. Explosion And Shock Waves, 2018, 38(5): 1051-1056. doi: 10.11883/bzycj-2017-0057
    [12]LI Mei, JIANG Jianwei, WANG Xin. Shock wave propagation characteristics of double layer charge explosion in the air[J]. Explosion And Shock Waves, 2018, 38(2): 367-372. doi: 10.11883/bzycj-2016-0209
    [13]Liu Guibing, Hou Hailiang, Zhu Xi, Zhang Guodong. Attenuation of shock wave passing through liquid droplets[J]. Explosion And Shock Waves, 2017, 37(5): 844-852. doi: 10.11883/1001-1455(2017)05-0844-09
    [14]Yao Cheng-bao, Li Ruo, Tian Zhou, Guo Yong-hui. Two dimensional simulation for shock wave produced by strong explosion in free air[J]. Explosion And Shock Waves, 2015, 35(4): 585-590. doi: 10.11883/1001-1455(2015)04-0585-06
    [15]Li Run-zhi, Huang Zi-chao, Si Rong-jun. Influence of environmental temperature on gas explosion pressure and its rise rate[J]. Explosion And Shock Waves, 2013, 33(4): 415-419. doi: 10.11883/1001-1455(2013)04-0415-05
    [16]ZHOU Jie, TAO Gang, WANG Jian. Numericalsimulationoflunginjuryinducedbyshockwave[J]. Explosion And Shock Waves, 2012, 32(4): 418-422. doi: 10.11883/1001-1455(2012)04-0418-05
    [17]XIANG Da-lin, RONG Ji-li, LIJian, YANG Rong-jie. Shockwavefeaturesofunderwaterexplosionofexplosiveswithmetalshell[J]. Explosion And Shock Waves, 2012, 32(1): 67-72. doi: 10.11883/1001-1455(2012)01-0067-06
    [18]SHI Hua-qiang, ZONG Zhi, JIA Jing-bei. Short-range characters of underwater blast waves[J]. Explosion And Shock Waves, 2009, 29(2): 125-130. doi: 10.11883/1001-1455(2009)02-0125-06
    [19]JIN Ri-ya, HU Shuang-qi, BO Tao, ZHANG Ying-hao, YUAN Hong-su. Relation between explosion pressure and volume fraction of ClO2 gas[J]. Explosion And Shock Waves, 2009, 29(3): 333-336. doi: 10.11883/1001-1455(2009)03-0333-04
    [20]YAN Shi-long, WANG Yin-jun. Characterization of pressure desensitization of emulsion explosive subjected to shock wave[J]. Explosion And Shock Waves, 2006, 26(5): 441-447. doi: 10.11883/1001-1455(2006)05-0441-07
  • Cited by

    Periodical cited type(15)

    1. 王丹,田安安,任喜平. 爆破应力波对邻近隧洞影响的有限元分析. 水利建设与管理. 2024(01): 34-38+61 .
    2. 楼晓明,武硕,姚炳金,解叶龙,胡艳,陈必港. 径向不耦合装药孔壁冲击压力特性. 金属矿山. 2024(04): 28-36 .
    3. 梁瑞,曹晓睿,周文海,楼晓明,胡才智,王树江. 不耦合装药系数对岩体爆破损伤的影响. 黄金科学技术. 2024(02): 306-317 .
    4. 谭义明,谢亮波,李二宝,顾红建. 某成品乳化炸药不耦合装药爆破振动规律分析. 现代矿业. 2024(04): 88-91 .
    5. 张宪堂,刘小康,王向阳,周红敏,王洪立. 炮孔间距对偏心不耦合装药贯通裂纹扩展的影响. 山东科技大学学报(自然科学版). 2024(03): 1-10 .
    6. 李启月,魏快快,马晶晶,田军,魏新傲,徐恒阳,肖宇航. 炮孔壁初始冲击压力直接测量试验研究. 工程爆破. 2024(03): 1-7+19 .
    7. 蒋长春,姚毅,白宇,李旖晴,毛亚纯. 高寒区不耦合介质装药爆破能量分配模拟研究. 黄金科学技术. 2024(06): 1077-1089 .
    8. 范勇,孙金山,贾永胜,姚颖康,张震,杜宇翔. 高地应力硐室光面爆破孔间应力相互作用与成缝机制. 岩石力学与工程学报. 2023(06): 1352-1365 .
    9. 王雁冰,付代睿,李杨,宋佳辉. 不同耦合介质爆破裂纹动态扩展特性研究. 力学与实践. 2023(05): 1021-1032 .
    10. 李新翰. 爆破施工对紧邻既有隧道影响的研究. 价值工程. 2023(30): 91-94 .
    11. 林继凯,孙梦迪,刘增辉,赵高明,王世伟,王凡繁. 中部空气间隔不同比例装药对炮孔孔壁受力及碎石块度的影响. 爆破器材. 2023(06): 55-64 .
    12. 贾进章,邢迎欢,李斌,赵丹. 不耦合系数对CO_2相变致裂影响数值模拟及研究. 工程爆破. 2023(06): 110-121 .
    13. 袁增森,徐振洋,潘博,李广尚. 不同不耦合系数下花岗岩爆破损伤特性的离散元模拟. 高压物理学报. 2022(01): 202-212 .
    14. 缪玉松,郭建,陈翔,王海亮,张义平,孙博闻. 矿用条形药包轴向爆轰波碰撞聚能特性研究. 金属矿山. 2022(07): 113-119 .
    15. 黄俊树,秦天戈,陈水和,吴明泽,李丽平,吴立. 浅埋隧洞下穿既有建筑物爆破施工振动分析. 爆破. 2022(04): 171-176+185 .

    Other cited types(13)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (689) PDF downloads(86) Cited by(28)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return