Turn off MathJax
Article Contents
GUO Ruiqi, LI Jiangnan, MA Linjian, OU Can, XU Xin. Microstructure and dynamic splitting tensile properties of CF/SSF reinforced coral sand cement mortar[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2-23-0466
Citation: GUO Ruiqi, LI Jiangnan, MA Linjian, OU Can, XU Xin. Microstructure and dynamic splitting tensile properties of CF/SSF reinforced coral sand cement mortar[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2-23-0466

Microstructure and dynamic splitting tensile properties of CF/SSF reinforced coral sand cement mortar

doi: 10.11883/bzycj-2-23-0466
  • Received Date: 2023-12-27
  • Rev Recd Date: 2024-03-30
  • Available Online: 2024-04-01
  • Coral concrete is a material with severely asymmetric tensile and compressive strengths. Therefore, studying the dynamic tensile mechanical properties of coral concrete is of great significance for island reef protective engineering. To investigate the dynamic tensile mechanical properties of carbon fiber (CF) and stainless steel fiber (SSF) reinforced coral sand cement mortar under impact loading, dynamic splitting tests were conducted using a 100 mm diameter split Hopkinson pressure bar (SHPB) device. Comparative analysis was carried out on the dynamic tensile strength and energy dissipation patterns of coral sand cement mortars with different fiber contents at various strain rates. In the SHPB tests, cement mortar specimens with different fiber contents were prepared: no fiber, 1.5% CF, 1.5% CF with 0.5% SSF, 1.5% CF with 1.0% SSF, and 1.5% CF with 1.5% SSF. The specimens were subjected to four impact speeds: 3.45, 4.86, 6.54, and 7.34 m/s. This allowed for impact-splitting tests conducted at different strain-rate ranges. In addition, SEM (Scanning Electron Microscope) tests were performed to reveal the action mechanism of the hybrid fibers. The results indicate that the static and dynamic tensile strengths of CF and SSF-reinforced coral sand cement mortar samples are significantly improved, with a maximum dynamic tensile strength increase rate of 66.03%. At the same strain rate, the dynamic tensile strength of the samples positively correlates with the fiber content, while the fragmentation degree negatively correlates with the fiber content. The fiber bridging effect effectively suppresses the development of cracks in the samples. Under the same fiber content, the dynamic increase factor increases significantly with the increase of strain rate, with a maximum increase factor of 2.44, demonstrating a clear tensile strain rate effect. The fragmentation degree and dissipated energy of coral sand cement mortar samples positively correlate with the strain rate, and samples with higher fiber dosages require more energy to dissipate during failure.
  • loading
  • [1]
    陈宗平, 庞云升, 许瑞天, 等. CFRP-钢复合约束海洋混凝土柱轴压性能试验研究及承载力计算 [J]. 建筑结构学报, 2023, 44(7): 116–128. DOI: 10.14006/j. jzjgxb.2022.0102. DOI: 10.14006/j.jzjgxb.2022.0102.

    CHEN Z P, PANG Y S, XU R T, et al. Experimental study on axial compression performance and bearing capacity calculation of CFRP-steel confined ocean concrete columns [J]. Journal of Building Structures, 2023, 44(7): 116–128. DOI: 10.14006/j.jzjgxb.2022.0102.
    [2]
    SUN L, WANG C, ZHANG C W, et al. Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments [J]. Advances in Structural Engineering, 2023, 26(3): 533–546. DOI: 10.1177/13694332221131153.
    [3]
    DENG Z H, WU D, WANG Y M. Mechanical properties and failure criteria of coral concrete under true triaxial compression [J]. Journal of Materials Science, 2022, 57(37): 17622–17636. DOI: 10.1007/S10853-022-07728-1.
    [4]
    WANG A G, HUANG M, CHU Y J, et al. Optimization of mix proportion of basic magnesium sulfate cement-based high-strength coral concrete [J]. Construction and Building Materials, 2022, 341: 127709. DOI: 10.1016/j.conbuildmat.2022.127709.
    [5]
    SUN J L, MA W C, GUO R Q, et al. Preparation and dynamic mechanical properties of fiber-reinforced high-strength all-coral-sand seawater concrete [J]. Structures, 2023, 54(1): 1623–1636. DOI: 10.1016/j.istruc.2023.06.006.
    [6]
    FU Q, XU W R, HE J Q, et al. Dynamic strength criteria for basalt fibre-reinforced coral aggregate concrete [J]. Composites Communications, 2021, 28: 100983. DOI: 10.1016/j.coco.2021.100983.
    [7]
    FU Q, WANG Z H, PENG G, et al. Pore structure related triaxial mechanical response and strength criterion of basalt fibre-reinforced coral aggregate concrete [J]. Journal of Central South University, 2023, 30(4): 1325–1344. DOI: 10.1007/s11771-023-5298-4.
    [8]
    WANG Z B, LI P F, HAN Y D, et al. Dynamic compressive properties of seawater coral aggregate concrete (SCAC) reinforced with mono or hybrid fibers [J]. Construction and Building Materials, 2022, 340(1): 127801. DOI: 10.1016/j.conbuildmat.2022.127801.
    [9]
    LIU B, ZHOU J K, WEN X Y, et al. Experimental investigation on the impact resistance of carbon fibers reinforced coral concrete [J]. Materials, 2019, 12(23): 4000. DOI: 10.3390/ma12234000.
    [10]
    王磊, 谷文慧, 汪稔, 等. 碳纤维增强珊瑚混凝土抗冲击性能试验研究 [J]. 硅酸盐通报, 2019, 38(10): 3339–3343. DOI: 10.16552/j.cnki.issn1001-1625.2019.10.044.

    WANG L, GU W H, WANG N, et al. Experimental study on shock resistance of carbon fiber reinforced coral concrete [J]. Bulletin of the Chinese Ceramic Society, 2019, 38(10): 3339–3343. DOI: 10.16552/j.cnki.issn1001-1625.2019.10.044.
    [11]
    张继旺, 黄满锋, 苏仕参, 等. 高强珊瑚混凝土 (HSCC) 单轴受压性能试验研究 [J]. 硅酸盐通报, 2022, 41(7): 2275–2291. DOI: 10.16552/j.cnki.issn1001-1625.2022.07.029.

    ZHANG J W, HUANG M F, SU S C, et al. Experimental study on uniaxial compression performance of high strength coral concrete (HSCC) [J]. Bulletin of the Chinese Ceramic Society, 2022, 41(7): 2275–2291. DOI: 10.16552/j.cnki.issn1001-1625.2022.07.029.
    [12]
    KIM M, YOO D, YOON Y. Effects of geometry and hybrid ratio of steel and polyethylene fibers on the mechanical performance of ultra-high-performance fiber-reinforced cementitious composites [J]. Journal of Materials Research and Technology, 2019, 8(2): 1835–1848. DOI: 10.1016/j.jmrt.2019.01.001.
    [13]
    赵焕起, 李国忠. 混杂纤维增强水泥基复合材料的力学性能 [J]. 复合材料学报, 2014, 31(1): 140–145. DOI: 10.13801/j.cnki.fhclxb.2014.01.021.

    ZHAO H Q, LI G Z. Mechanics performance of hybrid fiber reinforced cement-based composites [J]. Acta Materiae Compositae Sinica, 2014, 31(1): 140–145. DOI: 10.13801/j.cnki.fhclxb.2014.01.021.
    [14]
    QIN Q L, MENG Q S M, MEI Q H, et al. Dynamic response characteristics of coral reef sand concrete under impact loading [J]. Journal of Building Engineering, 2023, 66: 105847. DOI: 10.1016/j.jobe.2023.105847.
    [15]
    吴文娟, 汪稔, 朱长歧, 等. 珊瑚骨料混凝土动态压缩性能的试验研究 [J]. 建筑材料学报, 2019, 22(1): 7–14. DOI: 10.3969/j.issn.1007-9629.2019.01.002.

    WU W J, WANG R, ZHU C Q, et al. Experiment study on dynamic compression performance of coral aggregate concrete [J]. Journal of Building Materials, 2019, 22(1): 7–14. DOI: 10.3969/j.issn.1007-9629.2019.01.002.
    [16]
    程雨竹, 马林建, 王磊, 等. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土动力特性研究 [J]. 材料导报, 2024, 38(5): 23070191. DOI: 10.11896/cldb.23070191.

    CHENG Y Z, MA L J, WANG L, et al. Dynamic mechanical properties of modified polypropylene fiber-reinforced high-strength coral concrete under impact load [J]. Materials Reports: 1–17[2024-02-28]. DOI: 10.11896/cldb.23070191.
    [17]
    郭瑞奇, 任辉启, 龙志林, 等. 大直径SHTB实验装置数值模拟及混凝土细观骨料模型动态直拉研究 [J]. 爆炸与冲击, 2020, 40(9): 093101. DOI: 10.11883/bzycj-2020-0015.

    GUO R Q, REN H Q, LONG Z L, et al. Numerical simulation on a large diameter SHTB apparatus and dynamic tensile responses of concrete based on mesoscopic models [J]. Explosion and Shock Waves, 2020, 40(9): 093101. DOI: 10.11883/bzycj-2020-0015.
    [18]
    郑志豪, 任辉启, 龙志林, 等. PP/CF 增强珊瑚砂水泥基复合材料冲击压缩力学性能研究 [J]. 爆炸与冲击, 2022, 42(7): 073104. DOI: 10.11883/bzycj-2021-0297.

    ZHENG Z H, REN H Q, LONG Z L, et al. A study on impact compression mechanical properties of PP/CF reinforced coral sand cement-based composites [J]. Explosion and Shock Waves, 2022, 42(7): 073104. DOI: 10.11883/bzycj-2021-0297.
    [19]
    YUAN P, WEI N N, MA Q Y. Effect of nonparallel end face on energy dissipation analyses of rocklike materials based on SHPB tests [J]. Shock and Vibration, 2019, 2019: 2040947. DOI: 10.1155/2019/2040947.
    [20]
    郭瑞奇, 任辉启, 张磊, 等. 分离式大直径 Hopkinson 杆实验技术研究进展 [J]. 兵工学报, 2019, 40(7): 1518–1536. DOI: 10.3969/j.issn.1000-1093.2019.07.023.

    GUO R Q, REN H Q, ZHANG L, et al. Research progress of large-diameter split Hopkinson bar experimental technique [J]. Acta Armamentarii, 2019, 40(7): 1518–1536. DOI: 10.3969/j.issn.1000-1093.2019.07.023.
    [21]
    李妤茜, 乔秀臣. 外部因素对钙矾石晶体结构及形貌的影响综述 [J]. 硅酸盐通报, 2023, 42(1): 31–47. DOI: 10.16552/j.cnki.issn1001-1625.20221118.004.

    LI Y X, QIAO X C. Review on influences of external factors on crystal structure and morphology of ettringite [J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 31–47. DOI: 10.16552/j.cnki.issn1001-1625.20221118.004.
    [22]
    黄勇, 史才军, 欧阳雪, 等. 混凝土劈裂拉伸测试方法及性能研究进展 [J]. 材料导报, 2021, 35(1): 1131–1140. DOI: 10.11896/cldb.20010003.

    HUANG Y, SHI C J, OUYANG X, et al. Research progress on splitting tensile test methods and mechanical properties of concrete [J]. Materials Reports, 2021, 35(1): 1131–1140. DOI: 10.11896/cldb.20010003.
    [23]
    姚勇, 杨贞军, 张昕, 等. UHPFRC 圆盘动态劈裂试验及基于 μXCT 图像的破坏机理研究 [J]. 爆炸与冲击, 2023, 43(5): 053103. DOI: 10.11883/bzycj-2022-0243.

    YAO Y, YANG Z J, ZHANG X et al. Dynamic split tests of UHPFRC discs and failure mechanism analysis based on µXCT images [J]. Explosion and Shock Waves, 2023, 43(5): 053103. DOI: 10.11883/bzycj-2022-0243.
    [24]
    董凯, 任辉启, 阮文俊, 等. 珊瑚砂应变率效应研究 [J]. 爆炸与冲击, 2020, 40(9): 093102. DOI: 10.11883/bzycj-2019-0432.

    DONG K, REN H Q, RUAN W J, et al. Study on strain rate effect of coral sand [J]. Explosion and Shock Waves, 2020, 40(9): 093102. DOI: 10.11883/bzycj-2019-0432.
    [25]
    刘婷, 麻海燕, 吴彰钰, 等. 碱式硫酸镁水泥混凝土的冲击压缩性能 [J]. 建筑材料学报, 2021, 24(3): 562–570. DOI: 10.3969/j.issn.1007-9626.2021.03.016.

    LIU T, MA H Y, WU Z Y, et al. Impact compressive properties of basic magnesium sulfate cement concrete [J]. Journal of Bilding Materials, 2021, 24(3): 562–570. DOI: 10.3969/j.issn.1007-9626.2021.03.016.
    [26]
    LUNDBERG B. A split Hopkinson bar study of energy absorption in dynamic rock fragmentation [C]//Inter-national Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1976, 13(6): 187–197. DOI: 10.1016/0148-9062(76)91285-7.
    [27]
    田正宏, 江桂林, 吴军, 等. 高应变率下新型纤维砂浆动态劈拉特性 [J]. 建筑材料学报, 2018, 21(2): 189–195. DOI: 10.3969/j.issn.1007-9626.2018.02.003.

    TIAN Z H, JIANG G L, WU J, et al. Dynamic splitting tensile properties of mortar mixed with new fibers subjected to high strain rate [J]. Journal of Building Materials, 2018, 21(2): 189–195. DOI: 10.3969/j.issn.1007-9626.2018.02.003.
    [28]
    党发宁, 李玉涛, 任劼, 等. 混凝土冲击破坏动态力学及能量特性分析 [J]. 爆炸与冲击, 2022, 42(8): 083202. DOI: 10.11883/bzycj-2021-0444.

    DANG F N, LI Y T, REN J, et al. Analysis of dynamic mechanics and energy characteristics of concrete impact failure [J]. Explosion and Shock Waves, 2022, 42(8): 083202. DOI: 10.11883/bzycj-2021-0444.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (112) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return