Citation: | LIU Bin, LI Cheng, WANG Ruixing, CAO Qiwei, YANG Xianjun. Electromagnetic pulse driven liner implosion and compression of magnetized target[J]. Explosion And Shock Waves, 2018, 38(3): 688-695. doi: 10.11883/bzycj-2016-0133 |
[1] |
TACCETTI J M, INTRATOR T P, WURDEN G A, et al. FRX-L:A field-reversed configuration plasma injector for magnetized target fusion[J]. Review of Scientific Instruments, 2003, 74(10):4314-4323. doi: 10.1063/1.1606534
|
[2] |
DEGNAN J H, AMDAHL D J, Domonkos M, et al. Recent Magneto-inertial fusion experiments on FRCHX[C]//24nd IAEA Fusion Energy Conference. San Diego: 2012.
|
[3] |
WUEDEN G A, GRABOWSKI T C, DEGNAN J H, et al. Increased FRC lifetimes using a longer trap[C]//Bulletin of the American Physical Society (APS Meeting), 2013: 58.
|
[4] |
SLUTZ S A, HERRMANN M C, VESEY R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 2010, 17(5):263-52.
|
[5] |
CUNEO M E, HERRMANN M C, SINARS D B, et al. Magnetically driven implosions for inertial confinement fusion at sandia national laboratories[J]. IEEE Transactions on Plasma Science, 2012, 40(12):3222-3245. doi: 10.1109/TPS.2012.2223488
|
[6] |
GOTCHEV O V, KNAUER J P, CHANG P Y, et al. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas[J]. Review of Scientific Instruments. 2009, 80(4):495. http://cat.inist.fr/?aModele=afficheN&cpsidt=21489875
|
[7] |
HOHENBERGER M, CHANG P Y, FIKSEL G, et al. Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Lasera[J]. Physics of Plasmas, 2012, 19(5):139. https://www1.psfc.mit.edu/research/hedp/Home%20Page/Papers/Hohenberger_PoP-2012.pdf
|
[8] |
LABERGE M. Experimental results for an acoustic driver for MTF[J]. Journal of Fusion Energy, 2009, 28(2):179-182. doi: 10.1007/s10894-008-9181-y
|
[9] |
HSU S C, WITHERSPOON F D, CASSIBRY J T, et al. Overview of the plasma liner experiment (PLX)[C]//Bulletin of the American Physical Society (APS Meeting), 2009: 56.
|
[10] |
GARANIN S F, MAMYSHEC V I, YAKUBOV V B. The MAGO system:Current status[J]. Plasma Science, IEEE Transactions, 2006, 34(5):2273-2278. doi: 10.1109/TPS.2006.878368
|
[11] |
孙奇志, 方东凡, 刘伟, 等."荧光-1"实验装置物理设计[J].物理学报, 2013, 62(7):000507. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201307074
SUN Qizhi, FANG Dongfan, LIU Wei, et al. Physical design of the "Ying-Guang 1" device[J]. Acta Physica Sinica, 2013, 62(7):000507. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201307074
|
[12] |
李璐璐, 张华, 杨显俊.反场构型的二维磁流体力学描述[J].物理学报, 2014, 63(16):165202. doi: 10.7498/aps.63.165202
LI Lulu, ZHANG Hua, YANG Xianjun.Two-dimensional magneto-hydrodynamic description of field reversed configuration[J]. Acta Physica Sinica, 2014, 63(16):165202. doi: 10.7498/aps.63.165202
|
[13] |
GIBBS W W. Triple-threat method sparks hope for fusion[J]. Natrue, 2014, 505(7481):9-10. https://www.scientificamerican.com/article/triple-threat-method-sparks-hope-for-nuclear-fusion-energy/
|
[14] |
GOMEZ M R, SLUTZ S A, SEFKOW A B, et al. Experimental verification of the magnetized liner inertial fusion (MagLIF) concept[C]//IEEE International Conference on Plasma Sciences, 2014: 1.
|
[15] |
邓建军, 王勐, 谢卫平, 等.面向Z箍缩驱动聚变能源需求的超高功率重复频率驱动器技术[J].强激光与粒子束, 2014, 26(10):100201. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_qjgylzs201410001
DENG Jianjun, WANG Meng, XIE Weiping, et al. Super-power repetitive Z-pinch driver for fusion-fission reactor[J].High Power Laser and Particle Beams, 2014, 26(10):100201. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_qjgylzs201410001
|
[16] |
BASKO M. A1-D 3-T hydrodynamic code for simulating ICF targets driven by fast ion beams[R]. Version 4. Institute for Theoretical and Experimental Physics, Moscow, 2001.
|
[17] |
邓爱东, 张华, 杨显俊.电磁驱动产生超强磁场的参数优化设计[J].高压物理学报, 2015, 29(2):123-128. doi: 10.11858/gywlxb.2015.02.006
DENG Aidong, ZHANG Hua, YANG Xianjun. Parameters optimization of the strong magnetic gield generation driven by electromagnetic force[J]. Chinese Journal of High Pressure Physics, 2015, 29(2):123-128. doi: 10.11858/gywlxb.2015.02.006
|
[18] |
宁成, 丰志兴, 薛创.Z箍缩驱动动态黑腔中的基本能量转移特征[J].物理学报, 2014, 63(12):125208. doi: 10.7498/aps.63.125208
NING Cheng, FENG Zhixing, XUE Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch[J]. Acta Physica Sinica, 2014, 63(12):125208. doi: 10.7498/aps.63.125208
|
[19] |
ANDREAS J K. Magnetized cylindrical implosions driven by heavy ion beams[R]. Max Planck Institute of Quantum Optics, 2001.
|
[20] |
谷同祥, 安恒斌, 刘兴平, 等.迭代法和预处理技术:上册[M].北京:科学出版社, 2015:78-90.
|
[21] |
MEYER-TER-VEHN J. 惯性聚变物理[M]. 沈柏飞, 译. 北京: 科学出版社, 2008: 28-31.
|
[22] |
BASKO M M, KEMP A J, MEYER-TER-VEHN J. Ignition conditions for magnetized target fusion in cylindrical geometry[J]. Nuclear Fusion, 2000, 40(1):41-45.
|
[23] |
刘斌, 李成, 邓爱东, 等.脉冲驱动磁化等离子体内爆升温点火的数值模拟[J].强激光与粒子束, 2016, 28(7):075010. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs201607011
LIU Bin, LI Cheng, DENG Aidong, et al. The numerical modeling about ignition and implosion heating process of magnetized plasma driven by pulsed-power[J]. High Power Laser and Particle Beams, 2016, 28(7):075010. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs201607011
|
[1] | LIU Jiajia, ZHANG Xiang, GAO Zhiyang, ZHANG Yang, CHEN Jiuqiang, JIN Machao. Analysis on influencing factors of gas explosion overpressure peak in a U-shaped ventilation coal face based on orthogonal test[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0142 |
[2] | MAO Wenzhe, ZHANG Guotao, YANG Shuaishuai, XU Zihui, WANG Yan, JI Wentao. Characteristics of hydrogenated magnesium dust explosion flame propagating in a semi-enclosed space[J]. Explosion And Shock Waves, 2024, 44(6): 065401. doi: 10.11883/bzycj-2023-0363 |
[3] | GUO Hongzhan, ZHANG Yan, WANG Xiaorong. Explosion pressure characteristics of hydrogen-methane-ethanol mixtures[J]. Explosion And Shock Waves, 2023, 43(12): 125403. doi: 10.11883/bzycj-2023-0224 |
[4] | LIU Jiajia, ZHANG Yang, ZHANG Xiang, NIE Zishuo. Simulation study on propagation characteristics of gas explosion in Y-shaped ventilated coal face[J]. Explosion And Shock Waves, 2023, 43(8): 085401. doi: 10.11883/bzycj-2023-0018 |
[5] | ZHANG Yansong, LI Nan, GUO Rui, ZHANG Xinyan, ZHANG Gongyan, HUANG Xingwang. Relationship between pyrolysis kinetics and flame propagation characteristics of lauric acid and stearic acid dust explosion[J]. Explosion And Shock Waves, 2022, 42(7): 075402. doi: 10.11883/bzycj-2021-0470 |
[6] | LI Xiaobin, ZHANG Ruijie, CUI Liwei, ZHANG Qingli. Coupling analysis of explosion pressure and free radical change during methane explosion inhibited by urea[J]. Explosion And Shock Waves, 2020, 40(3): 032101. doi: 10.11883/bzycj-2019-0090 |
[7] | ZHU Xiaochao, ZHENG Ligang, YU Shuijun, WANG Yalei, LI Gang, DU Depeng, DOU Zengguo. Effect of blocking ratio on aluminum powder explosion’s characteristicsin vertical duct[J]. Explosion And Shock Waves, 2019, 39(10): 105402. doi: 10.11883/bzycj-2019-0006 |
[8] | ZHENG Ligang, LI Gang, WANG Yalei, ZHU Xiaochao, Dou Zengguo, DU Depeng, YU Minggao. Effect of blockage ratios on the characteristics of methane/air explosions suppressed by dry chemicals[J]. Explosion And Shock Waves, 2019, 39(11): 115403. doi: 10.11883/bzycj-2018-0228 |
[9] | YU Minggao, YANG Xufeng, ZHENG Kai, WAN Shaojie. Effect of obstacles on explosion characteristics of methane/hydrogen[J]. Explosion And Shock Waves, 2018, 38(1): 19-27. doi: 10.11883/bzycj-2017-0172 |
[10] | Gao Na, Zhang Yansong, Hu Yiting. Experimental study on gas explosion hazard under different temperatures and pressures[J]. Explosion And Shock Waves, 2016, 36(2): 218-223. doi: 10.11883/1001-1455(2016)02-0218-06 |
[11] | Lin Bai-quan, Hong Yi-du, Zhu Chuan-jie, Jiang Bing-you, Liu Qian, Sun Yu-min. Quantitative relationship between flow speed and overpressure of gas explosion in the open-end square tube[J]. Explosion And Shock Waves, 2015, 35(1): 108-115. doi: 10.11883/1001-1455(2015)01-0108-08 |
[12] | Li Run-zhi, Si Rong-jun. Simulation study of flow field characteristics of gas explosion in low temperature environment[J]. Explosion And Shock Waves, 2015, 35(6): 901-906. doi: 10.11883/1001-1455(2015)06-0901-06 |
[13] | Ma Qiu-ju, Zhang Qi, Pang Lei. Numerical simulation on interaction between laneway surface and methane explosion[J]. Explosion And Shock Waves, 2014, 34(1): 23-27. doi: 10.11883/1001-1455(2014)01-0023-05 |
[14] | Cao Wei-guo, Xu Sen, Liang Ji-yuan, Gao Wei, Pan Feng, Rao Guo-ning. Characteristics of flame propagation during coal dust cloud explosion[J]. Explosion And Shock Waves, 2014, 34(5): 586-593. doi: 10.11883/1001-1455(2014)05-0586-08 |
[15] | Zhou Xi-Hua, Meng Le, Shi Mei-jing, Guo Liang-hui, Zhao Jian-yuan, Feng Cun-cun. Influences of sealing fire zone in high gas mine on impact factors of gas explosion limits[J]. Explosion And Shock Waves, 2013, 33(4): 351-356. doi: 10.11883/1001-1455(2013)04-0351-06 |
[16] | Li Run-zhi, Huang Zi-chao, Si Rong-jun. Influence of environmental temperature on gas explosion pressure and its rise rate[J]. Explosion And Shock Waves, 2013, 33(4): 415-419. doi: 10.11883/1001-1455(2013)04-0415-05 |
[17] | XU Jing-de, ZHANG Li-cong, LI Ti-fa, YANG Geng-yu. Anumericalsimulationofstimulatingeffectoftramcars duringthemethaneexplosionpropagation[J]. Explosion And Shock Waves, 2012, 32(1): 47-50. doi: 10.11883/1001-1455(2012)01-0047-04 |
[18] | YE Qing, LIN Bai-quan, JIAN Cong-guang, JIA Zhen-zhen. Effectsofmagneticfieldonmethaneexplosionanditspropagation[J]. Explosion And Shock Waves, 2011, 31(2): 153-157. doi: 10.11883/1001-1455(2011)02-0153-05 |
[19] | LI Run-zhi. Numericalsimulationofcoaldustexplosioninducedbygasexplosion[J]. Explosion And Shock Waves, 2010, 30(5): 529-534. doi: 10.11883/1001-1455(2010)05-0529-06 |
[20] | JIN Ri-ya, HU Shuang-qi, BO Tao, ZHANG Ying-hao, YUAN Hong-su. Relation between explosion pressure and volume fraction of ClO2 gas[J]. Explosion And Shock Waves, 2009, 29(3): 333-336. doi: 10.11883/1001-1455(2009)03-0333-04 |
1. | 贾进章,田秀媛. 瓦斯爆炸抑制研究进展及发展趋势. 安全与环境学报. 2025(01): 95-107 . ![]() | |
2. | 杨克,李雪瑞,纪虹,郑凯,邢志祥,蒋军成. 改性煤矸石-海藻酸钠粉体对管道内甲烷/空气爆炸的抑爆实验. 爆炸与冲击. 2024(07): 174-187 . ![]() | |
3. | 张保勇,崔嘉瑞,陶金,王亚军,秦艺峰,魏春荣,张迎新. 不同迎爆面结构的泡沫金属对甲烷气体爆炸传播阻隔性能的实验研究. 爆炸与冲击. 2023(02): 170-180 . ![]() | |
4. | 段征,路长,班成伟,刘金刚,郭洪江,李明月. 封闭支管条件下ABC干粉抑爆机制研究. 火工品. 2023(02): 72-76 . ![]() | |
5. | 徐景德,田思雨,张延炜,张亮. 瓦斯爆炸主动式阻隔爆技术研究进展. 华北科技学院学报. 2022(04): 71-77 . ![]() | |
6. | 乔征龙,马恒,邓立军. 基于Charlette模型的柔性障碍物对瓦斯爆炸的影响研究. 安全与环境学报. 2022(05): 2420-2427 . ![]() | |
7. | 段玉龙,杨燕铃,李元兵,裴蓓,姚新友,王硕,米红甫. 滑移装置抑制甲烷爆炸影响分析. 中国安全生产科学技术. 2021(04): 122-127 . ![]() | |
8. | 段玉龙,李元兵,杨燕铃,龙凤英,俞树威,黄俊,卜云兵. 细水雾协同滑动装置对甲烷/空气预混气体爆炸特性的影响. 高压物理学报. 2021(05): 182-188 . ![]() |