Citation: | ZHANG Shiwen, LONG Jianhua, JIA Hongzhi, LIU Cangli. Influence of cylindrical shell on spatial distribution of pressure during propagation of divergent shockwave[J]. Explosion And Shock Waves, 2018, 38(2): 345-352. doi: 10.11883/bzycj-2016-0214 |
[1] |
程和法, 黄笑梅, 薛国宪, 等.冲击波在泡沫铝中的传播和衰减特性[J].材料科学与工程学报, 2004, 22(1):78-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clkxygc200401021
CHENG Hefa, HUANG Xiaomei, XUE Guoxian, et al. Propagation and attenuation characteristic of shock wave in aluminium foam[J]. Journal of Materials Science & Engineering, 2004, 22(1):78-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clkxygc200401021
|
[2] |
蔡军锋, 易建政, 续新宇, 等.UHMWPE纤维增强聚氨酯泡沫对爆炸冲击波衰减性能的影响[J].高分子材料科学与工程, 2009, 25(4):119-122. http://d.old.wanfangdata.com.cn/Periodical/gfzclkxygc200904033
CAI Junfeng, YI Jianzheng, XU Xinyu, et al. Shock wave attenuation properties of UHMWPE fiber reinforced polyurethane foam plastics[J]. Polymer Materials Science and Engineering, 2009, 25(4):119-122. http://d.old.wanfangdata.com.cn/Periodical/gfzclkxygc200904033
|
[3] |
郑志辉, 胡时胜.爆炸冲击波通过砾石层衰减规律的试验研究[J].工程爆破, 2008, 14(1):1-7. http://d.wanfangdata.com.cn/Periodical_gcbp200801001.aspx
ZHENG Zhihui, HU Shisheng. Experimental study on shock wave attenuation caused by gravel layer[J]. Engineering Blasting, 2008, 14(1):1-7. http://d.wanfangdata.com.cn/Periodical_gcbp200801001.aspx
|
[4] |
徐荣青, 崔一平, 赵瑞, 等.有机玻璃中冲击波衰减特性的研究[J].激光技术, 2008, 32(3):225-227. http://d.wanfangdata.com.cn/Periodical_jgjs200803024.aspx
XU Rongqing, CUI Yiping, ZHAO Rui, et al. Attenuation of laser generated shock waves in plexiglass[J]. Laser Technology, 2008, 32(3):225-227. http://d.wanfangdata.com.cn/Periodical_jgjs200803024.aspx
|
[5] |
陈亚红, 白春华, 王仲琦, 等.爆炸平面冲击波在金属颗粒介质中的衰减[J].高压物理学报, 2011, 25(6):481-486. doi: 10.11858/gywlxb.2011.06.001
CHEN Yahong, BAI Chunhua, WANG Zhongqi, et al. Planar explosion shock wave attenuation in granular meta[J]. Chinese Journal of High Pressure Physic, 2011, 25(6):481-486. doi: 10.11858/gywlxb.2011.06.001
|
[6] |
姜夕博, 饶国宁, 徐森, 等, 冲击波在有机玻璃中衰减特性的数值模拟与实验研究[J].南极理工大学学报, 2012, 36(6):1059-1064. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njlgdxxb201206028
JIANG Xibo, RAO Guoning, XU Sen, et al. Numerical simulation and experimental research on shock wave attenuation properties in PMMA[J]. Journal of Nanjing University of Science and Technology, 2012, 36(6):1059-1064. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njlgdxxb201206028
|
[7] |
GOEL M D, ALTENHOFERB P, MATSAGAR V A, et al. Interaction of a shock wave with a closed cell aluminum metal foam[J]. Combustion, Explosion, and Shock Waves, 2015, 51(3):373-380. doi: 10.1134/S0010508215030144
|
[8] |
AL-QANANWAH A K, KOPLIK J, ANDREOPOULOS Y. Attenuation of shock waves propagating through nano-structured porous materials[J]. Physics Of Fluids, 2013, 25:076102. doi: 10.1063/1.4811720
|
[9] |
范春雷, 胡金伟, 陈大年, 等.无氧铜平面冲击波实验的锰铜应力计测试[J].高压物理学报, 2008, 22(1):79-84. doi: 10.11858/gywlxb.2008.01.017
FAN Chunlei, HU Jinwei, CHEN Danian, et al. Measurements in planar shock wave experiments for OFHC using manganin gauges[J]. Chinese Jounal of High Pressure Physic, 2008, 22(1):79-84. doi: 10.11858/gywlxb.2008.01.017
|
[10] |
孙承伟, 卫玉章, 周之奎.应用爆轰物理[M].北京:科学出版社, 2000.
|
[11] |
彭建祥. Johnson-Cook本构模型和Steinberg本构模型的比较研究[D]. 绵阳: 中国工程物理研究院, 2006. http://cdmd.cnki.com.cn/Article/CDMD-82818-2007021508.htm
|
[12] |
AUTODYN: AUTODYN matsum_v6. 1_review[Z]. Concord: Century Dynamics Inc, 2010.
|
[13] |
周风华, 王礼立, 胡时胜.有机玻璃在高应变率下的损伤型非线性粘弹性本构关系及破坏准则[J].爆炸与冲击, 1992, 12(4):333-342. http://www.bzycj.cn/CN/abstract/abstract10751.shtml
ZHOU Fenghua, WANG Lili, HU Shisheng, et al. A damage-modified nonlinear visco-elastic constitutive relation and failure criterion of PMMA at high strain-rates[J]. Explosion and Shock Waves, 1992, 12(4):333-342. http://www.bzycj.cn/CN/abstract/abstract10751.shtml
|
[14] |
管公顺, 王少恒, 成方圆.不同加载应变率下有机玻璃的压缩破坏与力学行为, 航空材料学报, 2012, 32(6):96-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkclxb201206016
GUAN Gongshun, WANG Shaoheng, CHENG Fangyuan, et al. Compression failure and mechanics behavior of PMMA under different loading strain rates[J]. Journal of Aeronautical Materials, 2012, 32(6):96-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkclxb201206016
|
[15] |
史飞飞, 索涛, 侯兵, 等.YB-2航空有机玻璃的应变率和温度敏感性及其本构模型[J].爆炸与冲击, 2015, 35(6):769-776. doi: 10.11883/1001-1455(2015)06-0769-08
SHI Feifei, SUO Tao, HOU Bing, et al. Strain rate and temperature sensitivity and constitutive model of YB-2 of aeronautical acrylic polymer[J]. Explosion and Shock Waves, 2015, 35(6):769-776. doi: 10.11883/1001-1455(2015)06-0769-08
|
[16] |
张世文, 龙建华, 贾宏志, 等.平面波在有机玻璃中的衰减测试及数值模拟[J].兵工学报, 2016, 37(7):1214-1219. http://manu48.magtech.com.cn/Jwk_bgxb/CN/article/downloadArticleFile.do?attachType=PDF&id=5139
ZHANG Shiwen, LONG Jianhua, JIA Hongzhi, et al. Measuring and numerical simulation of attenuation of planar shock wave in PMMA[J]. Acta Armamentarii, 2016, 37(7):1214-1219. http://manu48.magtech.com.cn/Jwk_bgxb/CN/article/downloadArticleFile.do?attachType=PDF&id=5139
|
[1] | WEI Heguang, ZHOU Mingzhe, ZHU Ruiqing, HU Lingling. Mechanical and electrical degradation of impaired batteries after impact loading[J]. Explosion And Shock Waves, 2025, 45(2): 021421. doi: 10.11883/bzycj-2024-0312 |
[2] | QIAN Bingwen, ZHOU Gang, CHEN Chunlin, MA Kun, LI Yishuo, GAO Pengfei, YIN Lixin. Measurement and analysis of stress waves in concrete target under hypervelocity impact[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0181 |
[3] | GUO Delong, REN Yunyan, XU Yuxin, LI Yongpeng, LI Xudong, YANG Xiang. Effect of explosion location on impact response of titanium alloy directional detonation container[J]. Explosion And Shock Waves, 2024, 44(2): 025102. doi: 10.11883/bzycj-2023-0126 |
[4] | FAN Zhiqiang, CHANG Hanlin, HE Tianming, ZHENG Hang, HU Jingkun, TAN Xiaoli. Flexible measurement of low-intensity shock wave based on coupling piezoelectric effect of PVDF[J]. Explosion And Shock Waves, 2023, 43(1): 013102. doi: 10.11883/bzycj-2022-0152 |
[5] | SHA Minggong, SUN Ying, LI Yutong, LIU Yiming, LI Yulong. Dynamic experimental study on damage behaviors of aircraft envelope coating under the impact of high-speed raindrops[J]. Explosion And Shock Waves, 2023, 43(8): 083304. doi: 10.11883/bzycj-2023-0005 |
[6] | XIE Yushan, LU Jianhua, XU Songlin, SHU Zaiqin, ZHANG Jinyong. On impact properties of Mo-ZrC gradient metal ceramics[J]. Explosion And Shock Waves, 2023, 43(3): 033101. doi: 10.11883/bzycj-2022-0374 |
[7] | LI Pengcheng, ZHANG Xianfeng, LIU Chuang, WEI Haiyang, LIU Junwei, DENG Yuxuan. Study on the influence of attack angle and incident angle on ballistic characteristics of projectiles penetration into thin concrete targets[J]. Explosion And Shock Waves, 2022, 42(11): 113302. doi: 10.11883/bzycj-2021-0435 |
[8] | YUAN Liangzhu, MIAO Chunhe, SHAN Junfang, WANG Pengfei, XU Songlin. On strain-rate and inertia effects of concrete samples under impact[J]. Explosion And Shock Waves, 2022, 42(1): 013101. doi: 10.11883/bzycj-2021-0114 |
[9] | SONG Yiping, MIAO Chunhe, SHAN Junfang, WANG Pengfei, XU Songlin. Effect of stress-state adjustment on fragmentation behavior of quartz glass beads subjected to low-velocity impact[J]. Explosion And Shock Waves, 2022, 42(7): 073103. doi: 10.11883/bzycj-2021-0244 |
[10] | MA Yan, YUAN Fuping, WU Xiaolei. Dynamic shear behaviors and microstructural deformation mechanisms in FeNiAlC dual-phase high strength alloy[J]. Explosion And Shock Waves, 2021, 41(1): 011404. doi: 10.11883/bzycj-2020-0224 |
[11] | ZHANG Shiwen, LI Yinglei, CHEN yan, DAN Jiakun, GUO Zhaoliang, LIU Mingtao. Investigation on the technology of soft recovery of fragment produced by metal cylindrical shell subjected to explosive loading[J]. Explosion And Shock Waves, 2021, 41(11): 114102. doi: 10.11883/bzycj-2020-0449 |
[12] | ZHANG Xuemin, ZHOU Xianshun, WANG Lichuan, YANG Guofu, FENG Han, GAO Xiang, MA Mingzheng. Attenuation of blast wave in a large-section tunnel[J]. Explosion And Shock Waves, 2020, 40(2): 025101. doi: 10.11883/bzycj-2019-0045 |
[13] | MA Huayuan, LONG Yuan, XIE Quanmin, SONG Ge, ZHOU You, YIN Qin. Prototypical experiment and numerical simulation of ground vibrationresulting from explosion in shallowly buried gas pipelines[J]. Explosion And Shock Waves, 2019, 39(10): 102201. doi: 10.11883/bzycj-2018-0303 |
[14] | HU Ling, ZHENG Hang, FENG Qijie, ZHOU Wei, YE Xiangping, LU Lei. Mechanical behavior of long-term neutron-irradiated Al-Mg-Si alloy under compression[J]. Explosion And Shock Waves, 2019, 39(12): 123101. doi: 10.11883/bzycj-2018-0483 |
[15] | Tan Mengting, Zhang Xianfeng, Ge Xiankun, Liu Chuang, Xiong Wei. Theoretical model of interface defeat/penetration transition velocity of ceramic armor impacted by long-rod projectile[J]. Explosion And Shock Waves, 2017, 37(6): 1093-1100. doi: 10.11883/1001-1455(2017)06-1093-08 |
[16] | Fu Zheng, Liu Jun, Feng Qijing, Wang Zheng, Zhang Shudao. A CEL method with changeable computational domain[J]. Explosion And Shock Waves, 2017, 37(3): 528-535. doi: 10.11883/1001-1455(2017)03-0528-08 |
[17] | Wu Jinguo, Lin Qinghua, Wan Gang, Jin Yong, Li Haiyuan, Li Baoming. 3D numerical research of railgun gouging mechanism based on material point method[J]. Explosion And Shock Waves, 2017, 37(2): 307-314. doi: 10.11883/1001-1455(2017)02-0307-08 |
[18] | Wu Xutao, Liao Li. Numerical simulation of stress wave attenuation in brittle material and spalling experiment design[J]. Explosion And Shock Waves, 2017, 37(4): 705-711. doi: 10.11883/1001-1455(2017)04-0705-07 |
[19] | LIU Ai-wen, YU Yan-xiang, FU Chang-hua, CHEN Kun, ZHAO Ji-sheng, ZHOU Zheng-hua, WANG Wei, . Attenuationcharacteristicsandtopographiceffectof ascientificexplosionwith50texplosive[J]. Explosion And Shock Waves, 2010, 30(1): 21-26. doi: 10.11883/1001-1455(2010)01-0021-06 |
[20] | ZHAO Ji-bo, TAN Duo-wang, LI Jin-he, ZENG Hua-long, ZHANG Yuan-ping. Axial pressure damping of cylindrical TNT charges in the near underwater-explosion field[J]. Explosion And Shock Waves, 2008, 28(6): 539-543. doi: 10.11883/1001-1455(2008)06-0539-05 |