Citation: | ZHANG Guifu, ZHU Yujian, YANG Jiming. A study on jet flow induced by underwater explosion at a pit-interface[J]. Explosion And Shock Waves, 2018, 38(2): 241-249. doi: 10.11883/bzycj-2016-0238 |
[1] |
ASAY J R. Material ejection from shock-loaded free surfaces of aluminum and lead[R]. Albuquerque, NM, USA: Sandia Labs, 1976. http://adsabs.harvard.edu/abs/1976mesl.rept.....A
|
[2] |
VOGAN W S, ANDERSON W W, GROVER M, et al. Piezoelectric characterization of ejecta from shocked tin surfaces[J]. Journal of Applied Physics, 2005, 98(11):113508. doi: 10.1063/1.2132521
|
[3] |
ZELLNER M B, GROVER M, HAMMERBERG J E, et al. Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces[J]. Journal of Applied Physics, 2007, 102(1):013522. doi: 10.1063/1.2752130
|
[4] |
CHEN Y, HU H, TANG T, et al. Experimental study of ejecta from shock melted lead[J]. Journal of Applied Physics, 2012, 111(5):053509. doi: 10.1063/1.3692570
|
[5] |
王裴, 秦承森, 张树道, 等.SPH方法对金属表面微射流的数值模拟[J].高压物理学报, 2004, 18(2):149-156. doi: 10.11858/gywlxb.2004.02.014
WANG Pei, QIN Chengsen, ZHANG Shudao, et al. Simulated microjet from free surface of aluminum using smoothed particle hydrodynamics[J]. Chinese Journal of High Pressure Physics, 2004, 18(2):149-156. doi: 10.11858/gywlxb.2004.02.014
|
[6] |
刘超, 王裴, 秦承森, 等.冲击压力及加载速率对沟槽微射流的影响[J].计算物理, 2010, 27(2):190-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jswl201002005
LIU Chao, WANG Pei, QIN Chengsen, et al. Effect of pressure and shock wave risetime on material ejection[J]. Chinese Journal of Computational Physics, 2010, 27(2):190-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jswl201002005
|
[7] |
SHAO J L, WANG P, HE A M, et al. Atomistic simulations of shock-induced microjet from a grooved aluminium surface[J]. Journal of Applied Physics, 2013, 113(15):153501. doi: 10.1063/1.4801800
|
[8] |
DURAND O, SOULARD L. Large-scale molecular dynamics study of jet breakup and ejecta production from shock-loaded copper with a hybrid method[J]. Journal of Applied Physics, 2012, 111(4):044901. doi: 10.1063/1.3684978
|
[9] |
BLAKE J R, TAIB B B, DOHERTY G. Transient cavities near boundaries: Part 1: Rigid boundary[J]. Journal of Fluid Mechanics, 1986, 170:479-497. doi: 10.1017/S0022112086000988
|
[10] |
BLAKE J R, TAIB B B, DOHERTY G. Transient cavities near boundaries: Part 2: Free surface[J]. Journal of Fluid Mechanics, 1987, 181:197-212. doi: 10.1017/S0022112087002052
|
[11] |
BLAKE J R, Gibson D C. Cavitation bubbles near boundaries[J]. Annual Review of Fluid Mechanics, 1987, 19(1):99-123. doi: 10.1146/annurev.fl.19.010187.000531
|
[12] |
DADVAND A, KHOO B C, SHERVANI-TABAR M T. A collapsing bubble-induced microinjector: an experimental study[J]. Experiments in Fluids, 2009, 46(3):419-434. doi: 10.1007/s00348-008-0568-3
|
[13] |
ZHANG A M, CUI P, WANG Y. Experiments on bubble dynamics between a free surface and a rigid wall[J]. Experiments in Fluids, 2013, 54(10):1-18. doi: 10.1007/s00348-013-1602-7
|
[14] |
ZHANG A M, CUI P, CUI J, et al. Experimental study on bubble dynamics subject to buoyancy[J]. Journal of Fluid Mechanics, 2015, 776:137-160. doi: 10.1017/jfm.2015.323
|
[15] |
ZHANG S, WANG S P, ZHANG A M. Experimental study on the interaction between bubble and free surface using a high-voltage spark generator[J]. Physics of Fluids, 2016, 28(3):032109. doi: 10.1063/1.4944349
|
[16] |
ANTKOWIAK A, BREMOND N, LE DIZES S, et al. Short-term dynamics of a density interface following an impact[J]. Journal of Fluid Mechanics, 2007, 577(577):241-250. http://cat.inist.fr/?aModele=afficheN&cpsidt=18699835
|
[17] |
ANTKOWIAK A, BREMOND N, DUPLAT J, et al. Cavity jets[J]. Physics of Fluids, 2007, 19(9):91112-91700. doi: 10.1063/1.2775413
|
[18] |
TAGAWA Y, OUDALOV N, VISSER C W, et al. Highly focused supersonic microjets[J]. Physical Review X, 2012, 2(3):031002. doi: 10.1103/PhysRevX.2.031002
|
[19] |
PETERS I R, TAGAWA Y, OUDALOV N, et al. Highly focused supersonic microjets: numerical simulations[J]. Journal of Fluid Mechanics, 2013, 719(1):587-605. https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/div-classtitlehighly-focused-supersonic-microjets-numerical-simulationsdiv/7A9E524D0031CDC97ADC24AC356AAE5A
|
[20] |
KIYAMA A, TAGAWA Y, ANDO K, et al. Effects of a water hammer and cavitation on jet formation in a test tube[J]. Journal of Fluid Mechanics, 2016, 787(2):224-236. http://adsabs.harvard.edu/abs/2016JFM...787..224K
|
[21] |
KOITA T, ZHU Y, SUN M. Experimental study of the water jet induced by underwater electrical discharge in a narrow rectangular tube[J]. Shock Waves, 2016, 27(2):1-14. doi: 10.1007/s00193-016-0654-z
|
[22] |
张桂夫, 朱雨建, 李元超, 等.狭长直管约束条件水下电爆炸所产生的气泡运动和界面射流[J].爆炸与冲击, 2015, 35(5), 609-616. doi: 10.11883/1001-1455(2015)05-0609-08
ZHANG Guifu, ZHU Yujian, LI Yuanchao, et al. Bubble and jet induced by underwater wire explosion in narrow tube[J]. Explosion and Shock Waves, 2015, 35(5), 609-616. doi: 10.11883/1001-1455(2015)05-0609-08
|
[23] |
ZHANG G, ZHU Y, YANG J, et al. Liquid jets produced by an immersed electrical explosion in round tubes[J]. Physics of Fluids, 2017, 29(6):062102. doi: 10.1063/1.4984801
|
[1] | FANG Houlin, LU Qiang, GUO Quanshi, LI Guoliang, LIU Cunxu, TAO Sihao, ZHANG Dezhi. Experimental research on the free surface effect of shock wave and bubble behavior of small yield underwater explosion[J]. Explosion And Shock Waves, 2024, 44(8): 081444. doi: 10.11883/bzycj-2024-0003 |
[2] | XU Weizheng, ZHAO Hongtao, LI Yexun, HUANG Yu, FU Hua. An experimental study on dynamic response of cylindrical shell under near-field/contact underwater explosion[J]. Explosion And Shock Waves, 2023, 43(9): 091413. doi: 10.11883/bzycj-2023-0072 |
[3] | NI Hao, YANG Renshu, TAN Zhuoying, DING Chenxi, LIN Hai, WANG Yu, WU Haotian. An experimental study on temperature field evolution of carbon dioxide blasting jets[J]. Explosion And Shock Waves, 2023, 43(12): 123902. doi: 10.11883/bzycj-2023-0227 |
[4] | XU Weizheng, HUANG Yu, LI Yexun, ZHAO Hongtao, ZHENG Xianxu, WANG Yanping. On formation mechanism of local cavitation in the near-wall flow field caused by an underwater explosion[J]. Explosion And Shock Waves, 2023, 43(3): 032201. doi: 10.11883/bzycj-2022-0075 |
[5] | WEN Yanbo, HU Liangliang, QIN Jian, ZHANG Yanze, WANG Jinxiang, LIU Liangtao, HUANG Ruiyuan. Experimental study and numerical simulation on bubble pulsation and water jet in near-field underwater explosion[J]. Explosion And Shock Waves, 2022, 42(5): 053203. doi: 10.11883/bzycj-2021-0206 |
[6] | WEI Zihan, ZHAO Zhenyu, YE Fan, PEI Yiqun, WANG Xin, ZHANG Qiancheng, LU Tianjian. Resistance of all-metallic honeycomb sandwich structures to underwater explosion shock[J]. Explosion And Shock Waves, 2021, 41(8): 083104. doi: 10.11883/bzycj-2020-0392 |
[7] | SHENG Zhenxin, LIU Jianhu, ZHANG Xianpi, GAO Tao, CHEN Jiangtao, YANG Jing. On an array-sensor technology for measuring bubble jet load generated by underwater explosion[J]. Explosion And Shock Waves, 2021, 41(3): 031405. doi: 10.11883/bzycj-2020-0346 |
[8] | CUI Xiongwei, CHEN Yingyu, SU Biao, MA Chunlong. Characteristics of wall pressure generated by bubble jets in an underwater explosion[J]. Explosion And Shock Waves, 2020, 40(11): 111404. doi: 10.11883/bzycj-2020-0106 |
[9] | Zheng Chun, Chen Zhihua, Zhang Huanhao, Sun Xiaohui. Numerical investigations on propagating characteristics of shock waves in different triangle wedges[J]. Explosion And Shock Waves, 2016, 36(3): 379-385. doi: 10.11883/1001-1455(2016)03-0379-07 |
[10] | Zhang Gui-fu, Zhu Yu-jian, Li Yuan-chao, Yang Ji-ming. Bubble and jet induced by underwater wire explosion in a narrow tube[J]. Explosion And Shock Waves, 2015, 35(5): 609-616. doi: 10.11883/1001-1455(2015)05-0609-08 |
[11] | Liu Yun-long, Wang Yu, Zhang A-man. Whipping responses of double cylindrical shell structures to underwater explosion based on DAA2[J]. Explosion And Shock Waves, 2014, 34(6): 691-700. doi: 10.11883/1001-1455(2014)06-0691-10 |
[12] | LI Wan, ZHANG Zhi-hua, ZHOU Feng, ZHANG Tao. Time-frequencycharacteristicsofshockresponsesofunderwatertarget tounderwaterexplosion[J]. Explosion And Shock Waves, 2012, 32(3): 309-315. doi: 10.11883/1001-1455(2012)03-0309-07 |
[13] | CUI Jie, ZHANG A-man, GUO Jun, LI Shi-ming, HUANG Chao. Damageeffectofcabinstructuresubjectedtobubblejet[J]. Explosion And Shock Waves, 2012, 32(4): 355-361. doi: 10.11883/1001-1455(2012)04-0355-07 |
[14] | ZU Xu-dong, HUANG Zheng-xiang, JIA Xin. Theoreticalandexperimentalstudyonrubbercompositearmor anti-shapedchargejetpenetration[J]. Explosion And Shock Waves, 2012, 32(4): 376-383. doi: 10.11883/1001-1455(2012)04-0376-08 |
[15] | MINGFu-ren, ZHANGA-man, YANG Wen-shan. Three-dimensionalsimulationsonexplosiveloadcharacteristicsof underwaterexplosionnearfreesurface[J]. Explosion And Shock Waves, 2012, 32(5): 508-514. doi: 10.11883/1001-1455(2012)05-0508-07 |
[16] | LI Jian, RONG Ji-li, XIANG Da-lin. Effectsofchargemassandwaterdepthondynamicbehaviorsof anunderwaterexplosionbubble[J]. Explosion And Shock Waves, 2010, 30(4): 342-348. doi: 10.11883/1001-1455(2010)04-0342-07 |
[17] | TAO Gang, CHEN Hao, SHEN Qin-can. Superplastic flow problems of copper shaped-charge jets[J]. Explosion And Shock Waves, 2008, 28(4): 336-340. doi: 10.11883/1001-1455(2008)04-0336-05 |
[18] | MAO Dong-fang, LI Xiang-dong, SONG Liu-li. Numerical simulation of disturbance by sandwich explosive on jet[J]. Explosion And Shock Waves, 2008, 28(1): 86-91. doi: 10.11883/1001-1455(2008)01-0086-06 |
[19] | ZHANG A-man, YAO Xiong-liang, WEN Xue-you. Physical behaviors of an underwater explosion bubble in a free field[J]. Explosion And Shock Waves, 2008, 28(5): 391-400. doi: 10.11883/1001-1455(2008)05-0391-10 |
[20] | ZHANG Zhen-hua, WANG Cheng, HUANG Yu-ying, ZHU Xi, LI Zhen-huan. Experiment research of the dynamic response of fluid cabin in the bottom of warship subjected to underwater explosion[J]. Explosion And Shock Waves, 2007, 27(5): 431-437. doi: 10.11883/1001-1455(2007)05-0431-07 |
1. | 邓硕,赖志超,秦健,孟祥尧,迟卉,黄瑞源. 复杂边界条件下近场水下爆炸对固支方板的毁伤效应. 爆炸与冲击. 2023(11): 40-57 . ![]() |