Citation: | ZHANG Guifu, ZHU Yujian, YANG Jiming. A study on jet flow induced by underwater explosion at a pit-interface[J]. Explosion And Shock Waves, 2018, 38(2): 241-249. doi: 10.11883/bzycj-2016-0238 |
[1] |
ASAY J R. Material ejection from shock-loaded free surfaces of aluminum and lead[R]. Albuquerque, NM, USA: Sandia Labs, 1976. http://adsabs.harvard.edu/abs/1976mesl.rept.....A
|
[2] |
VOGAN W S, ANDERSON W W, GROVER M, et al. Piezoelectric characterization of ejecta from shocked tin surfaces[J]. Journal of Applied Physics, 2005, 98(11):113508. doi: 10.1063/1.2132521
|
[3] |
ZELLNER M B, GROVER M, HAMMERBERG J E, et al. Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces[J]. Journal of Applied Physics, 2007, 102(1):013522. doi: 10.1063/1.2752130
|
[4] |
CHEN Y, HU H, TANG T, et al. Experimental study of ejecta from shock melted lead[J]. Journal of Applied Physics, 2012, 111(5):053509. doi: 10.1063/1.3692570
|
[5] |
王裴, 秦承森, 张树道, 等.SPH方法对金属表面微射流的数值模拟[J].高压物理学报, 2004, 18(2):149-156. doi: 10.11858/gywlxb.2004.02.014
WANG Pei, QIN Chengsen, ZHANG Shudao, et al. Simulated microjet from free surface of aluminum using smoothed particle hydrodynamics[J]. Chinese Journal of High Pressure Physics, 2004, 18(2):149-156. doi: 10.11858/gywlxb.2004.02.014
|
[6] |
刘超, 王裴, 秦承森, 等.冲击压力及加载速率对沟槽微射流的影响[J].计算物理, 2010, 27(2):190-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jswl201002005
LIU Chao, WANG Pei, QIN Chengsen, et al. Effect of pressure and shock wave risetime on material ejection[J]. Chinese Journal of Computational Physics, 2010, 27(2):190-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jswl201002005
|
[7] |
SHAO J L, WANG P, HE A M, et al. Atomistic simulations of shock-induced microjet from a grooved aluminium surface[J]. Journal of Applied Physics, 2013, 113(15):153501. doi: 10.1063/1.4801800
|
[8] |
DURAND O, SOULARD L. Large-scale molecular dynamics study of jet breakup and ejecta production from shock-loaded copper with a hybrid method[J]. Journal of Applied Physics, 2012, 111(4):044901. doi: 10.1063/1.3684978
|
[9] |
BLAKE J R, TAIB B B, DOHERTY G. Transient cavities near boundaries: Part 1: Rigid boundary[J]. Journal of Fluid Mechanics, 1986, 170:479-497. doi: 10.1017/S0022112086000988
|
[10] |
BLAKE J R, TAIB B B, DOHERTY G. Transient cavities near boundaries: Part 2: Free surface[J]. Journal of Fluid Mechanics, 1987, 181:197-212. doi: 10.1017/S0022112087002052
|
[11] |
BLAKE J R, Gibson D C. Cavitation bubbles near boundaries[J]. Annual Review of Fluid Mechanics, 1987, 19(1):99-123. doi: 10.1146/annurev.fl.19.010187.000531
|
[12] |
DADVAND A, KHOO B C, SHERVANI-TABAR M T. A collapsing bubble-induced microinjector: an experimental study[J]. Experiments in Fluids, 2009, 46(3):419-434. doi: 10.1007/s00348-008-0568-3
|
[13] |
ZHANG A M, CUI P, WANG Y. Experiments on bubble dynamics between a free surface and a rigid wall[J]. Experiments in Fluids, 2013, 54(10):1-18. doi: 10.1007/s00348-013-1602-7
|
[14] |
ZHANG A M, CUI P, CUI J, et al. Experimental study on bubble dynamics subject to buoyancy[J]. Journal of Fluid Mechanics, 2015, 776:137-160. doi: 10.1017/jfm.2015.323
|
[15] |
ZHANG S, WANG S P, ZHANG A M. Experimental study on the interaction between bubble and free surface using a high-voltage spark generator[J]. Physics of Fluids, 2016, 28(3):032109. doi: 10.1063/1.4944349
|
[16] |
ANTKOWIAK A, BREMOND N, LE DIZES S, et al. Short-term dynamics of a density interface following an impact[J]. Journal of Fluid Mechanics, 2007, 577(577):241-250. http://cat.inist.fr/?aModele=afficheN&cpsidt=18699835
|
[17] |
ANTKOWIAK A, BREMOND N, DUPLAT J, et al. Cavity jets[J]. Physics of Fluids, 2007, 19(9):91112-91700. doi: 10.1063/1.2775413
|
[18] |
TAGAWA Y, OUDALOV N, VISSER C W, et al. Highly focused supersonic microjets[J]. Physical Review X, 2012, 2(3):031002. doi: 10.1103/PhysRevX.2.031002
|
[19] |
PETERS I R, TAGAWA Y, OUDALOV N, et al. Highly focused supersonic microjets: numerical simulations[J]. Journal of Fluid Mechanics, 2013, 719(1):587-605. https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/div-classtitlehighly-focused-supersonic-microjets-numerical-simulationsdiv/7A9E524D0031CDC97ADC24AC356AAE5A
|
[20] |
KIYAMA A, TAGAWA Y, ANDO K, et al. Effects of a water hammer and cavitation on jet formation in a test tube[J]. Journal of Fluid Mechanics, 2016, 787(2):224-236. http://adsabs.harvard.edu/abs/2016JFM...787..224K
|
[21] |
KOITA T, ZHU Y, SUN M. Experimental study of the water jet induced by underwater electrical discharge in a narrow rectangular tube[J]. Shock Waves, 2016, 27(2):1-14. doi: 10.1007/s00193-016-0654-z
|
[22] |
张桂夫, 朱雨建, 李元超, 等.狭长直管约束条件水下电爆炸所产生的气泡运动和界面射流[J].爆炸与冲击, 2015, 35(5), 609-616. doi: 10.11883/1001-1455(2015)05-0609-08
ZHANG Guifu, ZHU Yujian, LI Yuanchao, et al. Bubble and jet induced by underwater wire explosion in narrow tube[J]. Explosion and Shock Waves, 2015, 35(5), 609-616. doi: 10.11883/1001-1455(2015)05-0609-08
|
[23] |
ZHANG G, ZHU Y, YANG J, et al. Liquid jets produced by an immersed electrical explosion in round tubes[J]. Physics of Fluids, 2017, 29(6):062102. doi: 10.1063/1.4984801
|