Volume 38 Issue 2
Jan.  2018
Turn off MathJax
Article Contents
LI Penghui, GUO Weiguo, LIU Kaiye, WANG Jianjun, TAN Xueming. Validity analysis of materials' dynamic tensile SHTB experimental technique at ultrahigh temperature[J]. Explosion And Shock Waves, 2018, 38(2): 426-436. doi: 10.11883/bzycj-2016-0259
Citation: LI Penghui, GUO Weiguo, LIU Kaiye, WANG Jianjun, TAN Xueming. Validity analysis of materials' dynamic tensile SHTB experimental technique at ultrahigh temperature[J]. Explosion And Shock Waves, 2018, 38(2): 426-436. doi: 10.11883/bzycj-2016-0259

Validity analysis of materials' dynamic tensile SHTB experimental technique at ultrahigh temperature

doi: 10.11883/bzycj-2016-0259
  • Received Date: 2016-08-24
  • Rev Recd Date: 2017-01-18
  • Publish Date: 2018-03-25
  • In this work we investigated several key issues in view of the dynamic tensile experimental technique used in the split Hopkinson tension bar at ultra high temperature by performing numerical simulation, experimental verification and tests of several typical materials' dynamic tensile property at high temperature. The results show that the stress distribution was uniform for the flat tensile specimen with a hook joint after its gauge section size was optimized. The flow stress curve of the hook joint flat tensile specimen coincided well with that of the thread specimen, and no evident shake was observed in the strain rising stage. Through accurate pneumatic control, effective rapid synchronous assembly and loading of the specimen could be achieved at the same time when the loading wave arrived. When the temperature of the specimen reached 1 200 ℃, the average temperature of the specimen only dropped about 1.3% and the temperature rise of the loading bars kept below 180 ℃ during the whole cold contact between the high temperature specimen with the cold loading bars as well as in the process of the stress wave loading the specimen. To validate this experimental technique, tests were conducted at the temperature as high as about 1 200 ℃ for the dynamic tensile mechanical properties of a few materials such as 3D printed TC4 and single crystal nickel-base superalloy DD6.
  • loading
  • [1]
    GILAT A, WU X. Elevated temperature testing with the torsional split Hopkinson bar[J]. Experimental Mechanics, 1994, 34(2):166-170. doi: 10.1007/BF02325713
    [2]
    佟景伟, 高丛峰, 李鸿琦, 等.温度梯度对拉伸SHB试验误差的数值分析[J].爆炸与冲击, 2001, 21(4):277-281. http://www.bzycj.cn/CN/abstract/abstract10235.shtml

    TONG Jingwei, GAO Congfeng, LI Hongqi, et al. Numerical analysis on the error in the split Hopkinson tension bar test at temperature gradient[J]. Explosion and Shock Waves, 2001, 21(4):277-281. http://www.bzycj.cn/CN/abstract/abstract10235.shtml
    [3]
    夏开文, 刘文彦, 唐志平.30CrMnSiA钢高温动态力学性质的实验研究[J].爆炸与冲击, 1998, 18(4):310-316. http://www.bzycj.cn/CN/abstract/abstract10422.shtml

    XIA Kaiwen, LIU Wenyan, TANG Zhiping. Experimental study of dynamic properties of 30CrMnSiA steel at high temperature[J]. Explosion and Shock Waves, 1998, 18(4):310-316. http://www.bzycj.cn/CN/abstract/abstract10422.shtml
    [4]
    ROSENBERG Z, DAWICKE D, STEADER E, et al. A new technique for heating specimens in split-Hopkinson-bar experiments using induction-coil heaters[J]. Experimental Mechanics, 1986, 26(3):275-278. doi: 10.1007/BF02320053
    [5]
    FRANTZ C E, FOLLANSBEE P S, WRIGHT W J. New experimental techniques with the split Hopkinson pressure bar[C]//8th International Conference on High Energy Rate Fabrication. 1984.
    [6]
    GUO W G, NEMAT-NASSER S. Flow stress of nitronic-50 stainless steel over a wide range of strain rates and temperatures[J]. Mechanics of Materials, 2006, 38(11):1090-1103. doi: 10.1016/j.mechmat.2006.01.004
    [7]
    郭伟国.高导无氧铜在大变形、不同温度和不同应变率下的流动应力和本构模型[J].爆炸与冲击, 2005, 25(3):244-250. http://www.bzycj.cn/CN/abstract/abstract9341.shtml

    GUO Weiguo. Flow stress and constitutive model of OFHC Cu for large deformation, different temperatures and different strain rates[J]. Explosion and Shock Waves, 2005, 25(3):244-250. http://www.bzycj.cn/CN/abstract/abstract9341.shtml
    [8]
    郭伟国, 朱泽, 曾志银, 等. 高温高应变率拉伸同步实验装置: ZL 2012 2 0438121. 0[P]. 2013-04-17.
    [9]
    LI Yulong, ZHANG Yongkang, XUE Pu. Study of similarity law for bird impact on structure[J]. Chinese Journal of Aeronautics, 2008, 21(6):512-517. doi: 10.1016/S1000-9361(08)60168-5
    [10]
    陈滔, 李庆斌, 管俊峰, 等.霍普金森拉杆装置螺纹过渡段变形测量修正[J].工程力学, 2013, 30(7):276-281. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gclx201307043&dbname=CJFD&dbcode=CJFQ

    CHEN Tao, LI Qingbin, GUAN Junfeng, et al. Deformation measurement correction for the threaded connection and transition part utilizing SHTB[J]. Engineering Mechanics, 2013, 30(7):276-281. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gclx201307043&dbname=CJFD&dbcode=CJFQ
    [11]
    KLEPACZKO J R, RUSINEK A, RODRÍGUEZ-MARTÍNEZ J A, et al. Modelling of thermo-viscoplastic behaviour of DH-36 and Weldox 460-E structural steels at wide ranges of strain rates and temperatures, comparison of constitutive relations for impact problems[J]. Mechanics of Materials, 2009, 41(5):599-621. doi: 10.1016/j.mechmat.2008.11.004
    [12]
    张树华.TC4、16Mn合金及Al2O3陶瓷的高温弹性模量[J].高压物理学报, 1995, 9(2):133-138. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gywl502.007&dbname=CJFD&dbcode=CJFQ

    ZHANG Shuhua. High temperature elastic moduli of TC4, 16Mn and Al2O3 ceramics[J]. Chinese Journal of High Pressure Physics, 1995, 9(2):133-138. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gywl502.007&dbname=CJFD&dbcode=CJFQ
    [13]
    JASTRZEBSKI Z D, KOMANDURI R. The nature and properties of engineering materials[M]. Wiley, 1975.
    [14]
    LI P H, GUO W G, HUANG W D, et al. Thermomechanical response of 3D laser-deposited Ti-6Al-4V alloy over a wide range of strain rates and temperatures[J]. Materials Science and Engineering: A, 2015, 647:34-42. doi: 10.1016/j.msea.2015.08.043
    [15]
    WANG J, GUO W G, LI P, et al. Dynamic tensile properties of a single crystal nickel-base superalloy at high temperatures measured with an improved SHTB technique[J]. Materials Science and Engineering: A, 2016, 670:1-8. doi: 10.1016/j.msea.2016.06.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article Metrics

    Article views (6169) PDF downloads(295) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return