Citation: | WU Songlin, DU Yang, OU Yihong, ZHANG Peili, LIANG Jianjun. Numerical simulation of gasoline-air thermal ignition induced by continuous hot wall[J]. Explosion And Shock Waves, 2018, 38(3): 541-548. doi: 10.11883/bzycj-2016-0262 |
[1] |
MEHL M, PITZ W J, WESTBROOK C K, et al. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions[J]. Proceedings of the Combustion Institute, 2011, 33(1):193-200. doi: 10.1016/j.proci.2010.05.027
|
[2] |
BATTIN-LECLERC F. Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates[J]. Progress in Energy and Combustion Science, 2008, 34(4):440-498. doi: 10.1016/j.pecs.2007.10.002
|
[3] |
CANCINO L R, FIKRI M, OLIVEIRA A A M, et al. Ignition delay times of ethanol-containing multi-component gasoline surrogates:Shock-tube experiments and detailed modeling[J]. Fuel, 2011, 90(3):1238-1244. doi: 10.1016/j.fuel.2010.11.003
|
[4] |
DU Yang, ZHANG Peili, OU Yihong. Effects of humidity, temperature and slow oxidation reactions on the occurrence of gasoline-air explosions[J].Journal of Fire Protection Engineering, 2013, 23(3):226-238. doi: 10.1177/1042391513486464
|
[5] |
欧益宏, 杜扬, 蒋新生, 等.地下坑道瓦斯热着火实验研究[J].煤矿安全, 2011, 42(2)4-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mkaq201102002
OU Yihong, DU Yang, JIANG Xinsheng, et al. Experiment research on thermal ignition of gas in underground tunnel[J]. Safety in Coal Mines, 2011, 42(2):4-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mkaq201102002
|
[6] |
杜扬, 欧益宏, 吴英, 等.热壁条件下油气的热着火现象[J].爆炸与冲击, 2009, 29(3):268-274. doi: 10.11883/1001-1455(2009)03-0268-07
DU Yang, OU Yihong, WU Ying, et al. Thermal ignition phenomena of gasoline-air mixture induced by hot wall[J]. Explosion and Shock Waves, 2009, 29(3):268-274. doi: 10.11883/1001-1455(2009)03-0268-07
|
[7] |
OU Yihong, DU Yang, JIANG Xinsheng, et al. Study on the thermal ignition of gasoline-air mixture in underground oil depots based on experiment and numerical simulation[J]. Journal of Thermal Science, 2010, 19(2):173-181. doi: 10.1007/s11630-010-0173-7
|
[8] |
BI Mingshu, DONG Chengjie, ZHOU Yihui. Numerical simulation of premixed methane air deflagration in large L/D closed pipes[J]. Applied Thermal Engineering, 2012, 40:337-342. doi: 10.1016/j.applthermaleng.2012.01.065
|
[9] |
WANG Cheng, HAN Wenhu, NING Jianguo, et al. High resolution numerical simulation of methane explosion in bend ducts[J]. Safety Science, 2012, 50(4):709-717. doi: 10.1016/j.ssci.2011.08.047
|
[10] |
SKJOLD T, ARNTZEN B J, HANSEN O R, et al. Simulation of dust explosions in complex geometries with experimental input from standardized tests[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3):210-217. https://www.sciencedirect.com/science/article/pii/S0950423005000689
|
[11] |
SARLI V, BENEDETTO A, RUSSO G. Using Large Eddy Simulation for understanding vented gas explosions in the presence of obstacles[J]. Journal of Hazardous Materials, 2009, 169(1/2/3):435-442. https://www.researchgate.net/publication/24396517_Using_Large_Eddy_Simulation_for_understanding_vented_gas_explosions_in_the_presence_of_obstacles
|
[12] |
吴松林, 杜扬, 李国庆, 等.受限空间油气热着火的简化机理与分析[J].燃烧科学与技术, 2015, 21(1):20-27. http://www.cqvip.com/QK/98306X/201501/663795215.html
WU Songlin, DU Yang, LI Guoqing, et al. Reduced mechanism and analysis for thermal ignition of gasoline-air mixture in confined space[J]. Journal of Combustion Science and Technology, 2015, 21(1):20-27. http://www.cqvip.com/QK/98306X/201501/663795215.html
|
[13] |
WU Songlin. Research on catastrophe phenomenon in the occurrence and the development of gasoline-air explosion on the local heat resource in confined space[D]. Chongqing, China: Logistical Engineering University, 2015: 13-40.
|
[1] | QIAN Bingwen, ZHOU Gang, LI Mingrui, YIN Lixin, GAO Pengfei, CHEN Chunlin, MA Kun. Rigid-body critical transformation velocity of a high-strength steel projectile penetrating concrete targets at high velocities[J]. Explosion And Shock Waves, 2024, 44(10): 103301. doi: 10.11883/bzycj-2022-0309 |
[2] | LIU Junwei, ZHANG Xianfeng, LIU Chuang, CHEN Haihua, WANG Jipeng, XIONG Wei. Study on mass erosion model of projectile penetrating concrete at high speed considering variation of friction coefficient[J]. Explosion And Shock Waves, 2021, 41(8): 083301. doi: 10.11883/bzycj-2020-0250 |
[3] | LI Jie, CHENG Yihao, XU Tianhan, WANG Mingyang. Review on theoretical research of penetration effects into rock-like material[J]. Explosion And Shock Waves, 2019, 39(8): 081101. doi: 10.11883/bzycj-2019-0286 |
[4] | SONG Chunming, LI Gan, WANG Mingyang, QIU Yanyu, CHENG Yihao. Theoretical analysis of projectiles penetrating into rock targets at different velocities[J]. Explosion And Shock Waves, 2018, 38(2): 250-257. doi: 10.11883/bzycj-2017-0198 |
[5] | HAN Lu, HAN Qing, YANG Shuang. Simulation analysis of hydrodynamic ram in an aircraft fuel tank subjected to high-velocity multi-fragment impact[J]. Explosion And Shock Waves, 2018, 38(3): 473-484. doi: 10.11883/bzycj-2017-0230 |
[6] | Yuan Pu, Ma Qinyong. Correction of non-parallel end-faces of rock specimens in SHPB tests[J]. Explosion And Shock Waves, 2017, 37(5): 929-936. doi: 10.11883/1001-1455(2017)05-0929-08 |
[7] | Shen Chao, Pi Ai-guo, Liu Liu, Liu Jian-cheng, Huang Feng-lei. Discarding the sabot of a high-velocity projectile by a laminated wood target[J]. Explosion And Shock Waves, 2015, 35(5): 711-716. doi: 10.11883/1001-1455(2015)05-0711-06 |
[8] | Chai Chuan-guo, Pi Ai-guo, Wu Hai-jun, Huang Feng-lei. A calculation of penetration resistance during cratering for ogive-nose projectile into concrete[J]. Explosion And Shock Waves, 2014, 34(5): 630-635. doi: 10.11883/1001-1455(2014)05-0630-06 |
[9] | JinJie-fang, LiXi-bing, ChangJun-ran, TaoWei, QiuCan. Stress-straincurveandstresswavecharacteristicsof rocksubjectedtocyclicimpactloading[J]. Explosion And Shock Waves, 2013, 33(6): 613-619. doi: 10.11883/1001-1455(2013)06-0613-07 |
[10] | WANG Jun-qi, WANG Liang, ZHANG Jie. Influencesofdilatancyonrockpropertiesundershockloading[J]. Explosion And Shock Waves, 2012, 32(3): 333-336. doi: 10.11883/1001-1455(2012)03-0333-04 |
[11] | GONG Min, WANG Hua, WEN Bin. Dynamicstressinadjacentcoalseamsinduced bydeep-holeblastinginrock[J]. Explosion And Shock Waves, 2012, 32(2): 196-202. doi: 10.11883/1001-1455(2012)02-0196-07 |
[12] | WU Hao, FANGQin, GONG Zi-ming. Semi-theoreticalanalysesforpenetrationdepthofrigidprojectiles withdifferentnosegeometriesintoconcrete(rock)target[J]. Explosion And Shock Waves, 2012, 32(6): 573-580. doi: 10.11883/1001-1455(2012)06-0573-08 |
[13] | ZHAO Zhi-hong, GUO Jian-chun. Asizepredictionmodelforrockparticlesgenerated byanexplosioninfracturedrock[J]. Explosion And Shock Waves, 2011, 31(6): 669-672. doi: 10.11883/1001-1455(2011)06-0669-04 |
[14] | HE Xiang, XU Xiang-yun, SUN Gui-juan, SHEN Jun, YANG Jian-chao, JIN Dong-liang. Experimentalinvestigationonprojectileshigh-velocitypenetration intoconcretetarget[J]. Explosion And Shock Waves, 2010, 30(1): 1-6. doi: 10.11883/1001-1455(2010)01-0001-06 |
[15] | YAN Feng, JIANG Fu-xing. Experiment on rock damage under blasting load[J]. Explosion And Shock Waves, 2009, 29(3): 275-280. doi: 10.11883/1001-1455(2009)03-0275-06 |
[16] | CHEN De-chun, MENG Hong-xia, WU Fei-peng, ZHANG Qi. Cracking mechanism of rock by pressure pulses[J]. Explosion And Shock Waves, 2008, 28(4): 304-309. doi: 10.11883/1001-1455(2008)04-0304-06 |
[17] | ZHANG Sheng, WANG Qi-zhi, XIE He-ping. Size effect of rock dynamic fracture toughness[J]. Explosion And Shock Waves, 2008, 28(6): 544-551. doi: 10.11883/1001-1455(2008)06-0544-08 |
[18] | LIU Hong-yan, QIN Si-qing, YANG Jun. Simulation of rock failure by numerical manifold method under blasting load[J]. Explosion And Shock Waves, 2007, 27(1): 50-56. doi: 10.11883/1001-1455(2007)01-0050-07 |
[19] | CHEN Deng-ping, WANG Yong-gang, HE Hong-liang, LI Ming-fa, JING Fu-qian. Dynamic tensile strength of amphibolized olivine websterite (AOW) rock[J]. Explosion And Shock Waves, 2005, 25(6): 559-563. doi: 10.11883/1001-1455(2005)06-0559-05 |
1. | 杨慧,王可慧,周刚,李明,吴海军,戴湘晖,段建. 不同风化程度花岗岩的动态力学特性及抗侵彻性能. 爆炸与冲击. 2024(10): 49-66 . ![]() | |
2. | 董新刚,郑凯斌,喻琳峰,吴玉燕,李岩芳. 爆炸冲击作用下绝热挡环破碎性能研究. 应用力学学报. 2021(04): 1309-1317 . ![]() |