Citation: | KANG Yaming, JIA Yan, LUO Yucai, CHEN Jingbo. Critical vapour pressure for explosive spalling of high-strength concretebased on Mohr-Coulomb criterion[J]. Explosion And Shock Waves, 2018, 38(1): 224-232. doi: 10.11883/bzycj-2016-0305 |
[1] |
鞠杨, 刘红彬, 田开培, 等.RPC高温爆裂的微细观孔隙结构与蒸汽压变化机制的研究[J].中国科学:技术科学, 2013, 43(2):141-152. http://www.cnki.com.cn/Article/CJFDTotal-JEXG201302022.htm
JU Yang, LIU Hongbin, TIAN Kaipei, et al. An investigation on micropore structures and the vapor pressure mechanism of explosive spalling of RPC exposed to high temperature[J]. Science China: Technological Sciences, 2013, 43(2):141-152. http://www.cnki.com.cn/Article/CJFDTotal-JEXG201302022.htm
|
[2] |
TERRASI G P, BISBY L, BARBEZAT M, et al. Fire behavior of thin CFRP pretensioned high-strength concrete slabs[J]. Journal of Composites for Construction, 2012, 16(4):381-394. doi: 10.1061/(ASCE)CC.1943-5614.0000271
|
[3] |
KANÉMA M, PLIYA P, NOUMOWÉ A, et al. Spalling, thermal, and hydrous behavior of ordinary and high-strength concrete subjected to elevated temperature[J]. Journal of Materials in Civil Engineering, 2011, 23(7):921-930. doi: 10.1061/(ASCE)MT.1943-5533.0000272
|
[4] |
唐世斌, 唐春安, 李连崇, 等.脆性材料热-力耦合模型及热破裂数值分析方法[J].计算力学学报, 2009, 26(2):172-179. doi: 10.7511/jslx20092005
TANG Shibin, TANG Chun'an, LI Lianchong, et al. Numerical approach on the thermo-mechanical coupling of brittle material[J]. Chinese Journal of Computational Mechanics, 2009, 26(2):172-179. doi: 10.7511/jslx20092005
|
[5] |
柳献, 袁勇, 叶光, 等.高性能混凝土高温爆裂的机理探讨[J].土木工程学报, 2008, 41(6):61-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tmgcxb200806009
LIU Xian, YUAN Yong, YE Guang, et al. Investigation on the mechanism of explosive spalling of high performance concrete at elevated temperature[J]. China Civil Engineering Journal, 2008, 41(6):61-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tmgcxb200806009
|
[6] |
刘红彬, 鞠杨, 孙华飞, 等.活性粉末混凝土的高温爆裂及其内部温度场的试验研究[J].工业建筑, 2014, 44(11):126-130. http://www.cnki.com.cn/Article/CJFDTotal-HLJK201504019.htm
LIU Hongbin, JU Yang, SUN Huafei, et al. Experiment on the spalling and temperature field distribution of reactive powder concrete under high temperature[J]. Industrial Construction, 2014, 44(11):126-130. http://www.cnki.com.cn/Article/CJFDTotal-HLJK201504019.htm
|
[7] |
GUERRIERI M, FRAGOMENI S. Mechanisms of spalling of concrete panels of different geometry in hydrocarbon fire[J]. Journal of Materials in Civil Engineering, 2016, 28(12):04016164. doi: 10.1061/(ASCE)MT.1943-5533.0001680
|
[8] |
李荣涛, 李锡夔.混凝土中化学-热-湿-力耦合过程的数值方法[J].力学学报, 2006, 38(4):471-479. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_lxxb200604006
LI Rongtao, LI Xikui. Mathematical model and numerical method for simulation of coupled chemo-thermo-hydro-mechanical process in concrete subjected to fire[J]. Chinese Journal of Theroretical and Applied Mechanics, 2006, 38(4):471-479. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_lxxb200604006
|
[9] |
石东升, 王海波, 刘曙光.影响火灾下混凝土爆裂因素的试验研究[J].内蒙古工业大学学报(自然科学版), 2007, 26(2):129-135. http://www.docin.com/p-1062062357.html
SHI Dongsheng, WANG Haibo, LIU Shuguang. Experimental studies of factors affecting spallation of concrete subjected to fire[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2007, 26(2):129-135. http://www.docin.com/p-1062062357.html
|
[10] |
雪凯旺, 苗苗, 周健.高强混凝土高温爆裂行为改善措施的研究进展[J].硅酸盐学报, 2016, 35(10):3209-3214. http://c.wanfangdata.com.cn/periodical/gsytb/2016-10.aspx
XUE Kaiwang, MIAO Miao, ZHOU Jian. Improvement measures of high temperature explosive spalling of high strength concrete[J]. Bulletin of The Chinese Ceramic Society, 2016, 35(10):3209-3214. http://c.wanfangdata.com.cn/periodical/gsytb/2016-10.aspx
|
[11] |
王里, 刘红彬, 鞠杨, 等.高强高性能混凝土高温爆裂机理研究进展[J].力学与实践, 2014, 36(4):403-412. doi: 10.6052/1000-0879-13-272
WANG Li, LIU Hongbin, JU Yang, et al. Mechanism of explosive spalling of high strength and high performance concrete exposed to elevated temperature[J]. Mechanics in Engineering, 2014, 36(4):403-412. doi: 10.6052/1000-0879-13-272
|
[12] |
徐志英.岩石力学[M].北京:水利水电出版社, 1993:47-59.
|
[13] |
俞茂宏.岩土类材料的统一强度理论及其应用[J].岩土工程学报, 1994, 16(2):1-10. http://www.cqvip.com/QK/90854X/199812/3297812.html
|
[14] |
郭少华, 周绍青, 邹春伟.压缩荷载条件下岩石类材料的断裂模式研究[J].实验力学, 2008, 23(2):149-156. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX200802007.htm
GUO Shaohua, ZHOU Shaoqing, ZOU Chunwei. Research on fracture mode of rock-type materials under compressive loading[J]. Journal of Experimental Mechanics, 2008, 23(2):149-156. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX200802007.htm
|
[15] |
JIN Tao, YONG Yuan, LUC Taerwe. Compressive strength of self-compacting concrete during high-temperature exposure[J]. Journal of Materials in Civil Engineering, 2010, 22(10):1005-1011. doi: 10.1061/(ASCE)MT.1943-5533.0000102
|
[16] |
丁文龙, 曾维特, 王濡岳, 等.页岩储层构造应力场模拟与裂缝分布预测方法及应用[J].地学前缘, 2016, 23(2):63-74. http://www.cqvip.com/QK/98600X/201602/667723559.html
DING Wenlong, ZENG Weite, WANG Ruyue, et al. Empirical strength criterion for rock mass and its application[J]. Earth Science Frontiers, 2016, 23(2):63-74. http://www.cqvip.com/QK/98600X/201602/667723559.html
|
[17] |
昝月稳, 俞茂宏, 王思敬.岩石非线性统一强度准则[J].岩石力学与工程学报, 2002, 21(10):1435-1441. doi: 10.3321/j.issn:1000-6915.2002.10.001
ZAN Yuewen, YU Maohong, WANG Sijing. Nonlinear unified strength criterion of rock[J]. Chinese Journal of Rock Mechanics and Geotechnical Engineering, 2002, 21(10):1435-1441. doi: 10.3321/j.issn:1000-6915.2002.10.001
|
[18] |
郑安兴, 罗先启.压剪应力状态下岩石复合型断裂判据的研究[J].岩土力学, 2015, 36(7):1892-1898. https://www.wenkuxiazai.com/doc/21f1cb0bad51f01dc381f16f.html
ZHENG Anxing, LUO Xianqi. Research on combined fracture criterion of rock under compression-shear stress[J]. Rock and Soil Mechanics, 2015, 36(7):1892-1898. https://www.wenkuxiazai.com/doc/21f1cb0bad51f01dc381f16f.html
|
[19] |
刘泉声, 魏莱, 刘学伟, 等.基于Griffith强度理论的岩石裂纹起裂经验预测方法研究[J].岩石力学与工程学报, 2017, 36 (7):1561-1569. http://rss.cnki.net/kns/rss.aspx?Journal=YSLX&Virtual=knavi
LIU Quansheng, WEI Lai, LIU Xuewei, et al. A revised empirical method for predicting crack initiation based on Griffith strength criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7):1561-1569. http://rss.cnki.net/kns/rss.aspx?Journal=YSLX&Virtual=knavi
|
[20] |
TRAVIS Q B, ASCE M, MOBASHER B. Correlation of elastic modulus and permeability in concrete subjected to elevated temperatures[J]. Journal of Materials in Civil Engineering, 2010, 22(7):735-740. doi: 10.1061/(ASCE)MT.1943-5533.0000074
|