Volume 38 Issue 1
Nov.  2017
Turn off MathJax
Article Contents
KANG Yaming, JIA Yan, LUO Yucai, CHEN Jingbo. Critical vapour pressure for explosive spalling of high-strength concretebased on Mohr-Coulomb criterion[J]. Explosion And Shock Waves, 2018, 38(1): 224-232. doi: 10.11883/bzycj-2016-0305
Citation: KANG Yaming, JIA Yan, LUO Yucai, CHEN Jingbo. Critical vapour pressure for explosive spalling of high-strength concretebased on Mohr-Coulomb criterion[J]. Explosion And Shock Waves, 2018, 38(1): 224-232. doi: 10.11883/bzycj-2016-0305

Critical vapour pressure for explosive spalling of high-strength concretebased on Mohr-Coulomb criterion

doi: 10.11883/bzycj-2016-0305
  • Received Date: 2016-10-17
  • Rev Recd Date: 2017-03-08
  • Publish Date: 2018-01-25
  • The explosive spalling probability of high-strength concrete will increase with the increase of water content, which shows that the vapour pressure is one of the main factors causing the explosive spalling, and this pressure affects the strength through changing the effective stress. To determine the effect of vapour pressure on strength quantitatively, a formula of critical vapour pressure was obtained on the basis of the principle of effective stress and Mohr-Coulomb criterion, and its logical rigor was proved from the aspect of mathematics. The main conclusions are as follows. (1) The theoretical formula has a clear physical meaning, and has a good consistency with the existing research results and the practical engineering disaster. (2) The influences of material physical properties on the crack cannot be fully considered in theoretical analyses, so the mechanical tests of concrete at extreme high temperature are the bases for determining the relevant coefficients of theory analysis. (3) Fire accidents should be investigated on the spot. Meanwhile, the destruction form and characteristics of different parts of the building should be analyzed after the fire. On the basis of these, the mechanism is clarified from the two aspects of the stress state and the ultimate failure characteristic of the component. Finally, the deficiencies were improved in theoretical analysis.
  • loading
  • [1]
    鞠杨, 刘红彬, 田开培, 等.RPC高温爆裂的微细观孔隙结构与蒸汽压变化机制的研究[J].中国科学:技术科学, 2013, 43(2):141-152. http://www.cnki.com.cn/Article/CJFDTotal-JEXG201302022.htm

    JU Yang, LIU Hongbin, TIAN Kaipei, et al. An investigation on micropore structures and the vapor pressure mechanism of explosive spalling of RPC exposed to high temperature[J]. Science China: Technological Sciences, 2013, 43(2):141-152. http://www.cnki.com.cn/Article/CJFDTotal-JEXG201302022.htm
    [2]
    TERRASI G P, BISBY L, BARBEZAT M, et al. Fire behavior of thin CFRP pretensioned high-strength concrete slabs[J]. Journal of Composites for Construction, 2012, 16(4):381-394. doi: 10.1061/(ASCE)CC.1943-5614.0000271
    [3]
    KANÉMA M, PLIYA P, NOUMOWÉ A, et al. Spalling, thermal, and hydrous behavior of ordinary and high-strength concrete subjected to elevated temperature[J]. Journal of Materials in Civil Engineering, 2011, 23(7):921-930. doi: 10.1061/(ASCE)MT.1943-5533.0000272
    [4]
    唐世斌, 唐春安, 李连崇, 等.脆性材料热-力耦合模型及热破裂数值分析方法[J].计算力学学报, 2009, 26(2):172-179. doi: 10.7511/jslx20092005

    TANG Shibin, TANG Chun'an, LI Lianchong, et al. Numerical approach on the thermo-mechanical coupling of brittle material[J]. Chinese Journal of Computational Mechanics, 2009, 26(2):172-179. doi: 10.7511/jslx20092005
    [5]
    柳献, 袁勇, 叶光, 等.高性能混凝土高温爆裂的机理探讨[J].土木工程学报, 2008, 41(6):61-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tmgcxb200806009

    LIU Xian, YUAN Yong, YE Guang, et al. Investigation on the mechanism of explosive spalling of high performance concrete at elevated temperature[J]. China Civil Engineering Journal, 2008, 41(6):61-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tmgcxb200806009
    [6]
    刘红彬, 鞠杨, 孙华飞, 等.活性粉末混凝土的高温爆裂及其内部温度场的试验研究[J].工业建筑, 2014, 44(11):126-130. http://www.cnki.com.cn/Article/CJFDTotal-HLJK201504019.htm

    LIU Hongbin, JU Yang, SUN Huafei, et al. Experiment on the spalling and temperature field distribution of reactive powder concrete under high temperature[J]. Industrial Construction, 2014, 44(11):126-130. http://www.cnki.com.cn/Article/CJFDTotal-HLJK201504019.htm
    [7]
    GUERRIERI M, FRAGOMENI S. Mechanisms of spalling of concrete panels of different geometry in hydrocarbon fire[J]. Journal of Materials in Civil Engineering, 2016, 28(12):04016164. doi: 10.1061/(ASCE)MT.1943-5533.0001680
    [8]
    李荣涛, 李锡夔.混凝土中化学-热-湿-力耦合过程的数值方法[J].力学学报, 2006, 38(4):471-479. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_lxxb200604006

    LI Rongtao, LI Xikui. Mathematical model and numerical method for simulation of coupled chemo-thermo-hydro-mechanical process in concrete subjected to fire[J]. Chinese Journal of Theroretical and Applied Mechanics, 2006, 38(4):471-479. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_lxxb200604006
    [9]
    石东升, 王海波, 刘曙光.影响火灾下混凝土爆裂因素的试验研究[J].内蒙古工业大学学报(自然科学版), 2007, 26(2):129-135. http://www.docin.com/p-1062062357.html

    SHI Dongsheng, WANG Haibo, LIU Shuguang. Experimental studies of factors affecting spallation of concrete subjected to fire[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2007, 26(2):129-135. http://www.docin.com/p-1062062357.html
    [10]
    雪凯旺, 苗苗, 周健.高强混凝土高温爆裂行为改善措施的研究进展[J].硅酸盐学报, 2016, 35(10):3209-3214. http://c.wanfangdata.com.cn/periodical/gsytb/2016-10.aspx

    XUE Kaiwang, MIAO Miao, ZHOU Jian. Improvement measures of high temperature explosive spalling of high strength concrete[J]. Bulletin of The Chinese Ceramic Society, 2016, 35(10):3209-3214. http://c.wanfangdata.com.cn/periodical/gsytb/2016-10.aspx
    [11]
    王里, 刘红彬, 鞠杨, 等.高强高性能混凝土高温爆裂机理研究进展[J].力学与实践, 2014, 36(4):403-412. doi: 10.6052/1000-0879-13-272

    WANG Li, LIU Hongbin, JU Yang, et al. Mechanism of explosive spalling of high strength and high performance concrete exposed to elevated temperature[J]. Mechanics in Engineering, 2014, 36(4):403-412. doi: 10.6052/1000-0879-13-272
    [12]
    徐志英.岩石力学[M].北京:水利水电出版社, 1993:47-59.
    [13]
    俞茂宏.岩土类材料的统一强度理论及其应用[J].岩土工程学报, 1994, 16(2):1-10. http://www.cqvip.com/QK/90854X/199812/3297812.html
    [14]
    郭少华, 周绍青, 邹春伟.压缩荷载条件下岩石类材料的断裂模式研究[J].实验力学, 2008, 23(2):149-156. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX200802007.htm

    GUO Shaohua, ZHOU Shaoqing, ZOU Chunwei. Research on fracture mode of rock-type materials under compressive loading[J]. Journal of Experimental Mechanics, 2008, 23(2):149-156. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX200802007.htm
    [15]
    JIN Tao, YONG Yuan, LUC Taerwe. Compressive strength of self-compacting concrete during high-temperature exposure[J]. Journal of Materials in Civil Engineering, 2010, 22(10):1005-1011. doi: 10.1061/(ASCE)MT.1943-5533.0000102
    [16]
    丁文龙, 曾维特, 王濡岳, 等.页岩储层构造应力场模拟与裂缝分布预测方法及应用[J].地学前缘, 2016, 23(2):63-74. http://www.cqvip.com/QK/98600X/201602/667723559.html

    DING Wenlong, ZENG Weite, WANG Ruyue, et al. Empirical strength criterion for rock mass and its application[J]. Earth Science Frontiers, 2016, 23(2):63-74. http://www.cqvip.com/QK/98600X/201602/667723559.html
    [17]
    昝月稳, 俞茂宏, 王思敬.岩石非线性统一强度准则[J].岩石力学与工程学报, 2002, 21(10):1435-1441. doi: 10.3321/j.issn:1000-6915.2002.10.001

    ZAN Yuewen, YU Maohong, WANG Sijing. Nonlinear unified strength criterion of rock[J]. Chinese Journal of Rock Mechanics and Geotechnical Engineering, 2002, 21(10):1435-1441. doi: 10.3321/j.issn:1000-6915.2002.10.001
    [18]
    郑安兴, 罗先启.压剪应力状态下岩石复合型断裂判据的研究[J].岩土力学, 2015, 36(7):1892-1898. https://www.wenkuxiazai.com/doc/21f1cb0bad51f01dc381f16f.html

    ZHENG Anxing, LUO Xianqi. Research on combined fracture criterion of rock under compression-shear stress[J]. Rock and Soil Mechanics, 2015, 36(7):1892-1898. https://www.wenkuxiazai.com/doc/21f1cb0bad51f01dc381f16f.html
    [19]
    刘泉声, 魏莱, 刘学伟, 等.基于Griffith强度理论的岩石裂纹起裂经验预测方法研究[J].岩石力学与工程学报, 2017, 36 (7):1561-1569. http://rss.cnki.net/kns/rss.aspx?Journal=YSLX&Virtual=knavi

    LIU Quansheng, WEI Lai, LIU Xuewei, et al. A revised empirical method for predicting crack initiation based on Griffith strength criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7):1561-1569. http://rss.cnki.net/kns/rss.aspx?Journal=YSLX&Virtual=knavi
    [20]
    TRAVIS Q B, ASCE M, MOBASHER B. Correlation of elastic modulus and permeability in concrete subjected to elevated temperatures[J]. Journal of Materials in Civil Engineering, 2010, 22(7):735-740. doi: 10.1061/(ASCE)MT.1943-5533.0000074
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (6166) PDF downloads(172) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return