Volume 38 Issue 3
Feb.  2018
Turn off MathJax
Article Contents
SUN Conghuang, QU Yandong, LIU Wanli, ZHAI Cheng. Influence of different ignition conditions on deflagration characteristics of a premixed mixture of H2 and air in a closed pipe[J]. Explosion And Shock Waves, 2018, 38(3): 622-631. doi: 10.11883/bzycj-2016-0309
Citation: SUN Conghuang, QU Yandong, LIU Wanli, ZHAI Cheng. Influence of different ignition conditions on deflagration characteristics of a premixed mixture of H2 and air in a closed pipe[J]. Explosion And Shock Waves, 2018, 38(3): 622-631. doi: 10.11883/bzycj-2016-0309

Influence of different ignition conditions on deflagration characteristics of a premixed mixture of H2 and air in a closed pipe

doi: 10.11883/bzycj-2016-0309
  • Received Date: 2016-10-20
  • Rev Recd Date: 2017-01-16
  • Publish Date: 2018-05-25
  • Numerical simulation was carried out by applying the fluid dynamics software Fluent to explore the influences of different ignition conditions, such as ignition locations (the distances from the left wall of the closed pipe are 100, 200, and 500 mm, respectively), ignition temperatures (1 000, 1 500 and 2 000 K) and ignition area (ignition radius:50, 35 and 20 mm) on the deflagration characteristics of the premixed H2/air mixture in a closed pipe with 1 000 mm in length. The results show that, when the ignition positions are far away from the left wall of the closed pipe, the temperature of the intermediate node in the flow field is higher and the temperature rising is faster in the closed pipe. The rising rates of the maximum temperatures are basically synchronous on the conditions of the three different ignition temperatures (1 000, 1 500 and 2 000 K). Meanwhile, the combustion reaction of H2/air is more intense with the increasing of the ignition temperatures. The temperature rising rate in the closed pipe is accelerated. However, the peak pressure in the closed pipe is reduced. Moreover, the smaller the ignition area, the faster the temperature rising of H2/air in the early stage. When the radius of the ignition area is 35 mm and the ignition position away from the left side wall of the closed pipe is 100 mm, the deflagration parameters of H2/air are relatively higher. The influence of different ignition conditions on the kinetic energy and internal energy is similar to the influence of different ignition conditions on the velocity and temperature of the premixed gas, but the ignition conditions hardly influence the vorticity.
  • loading
  • [1]
    ZHU X C, SFORZA L, RANADIVE T, et al. Experimental and numerical study of flame kernel formation processes of propane-air mixture in a pressurized combustion vessel[J]. SAE International Journal of Engines, 2016, 9(3):1494-1511. https://core.ac.uk/display/80335543
    [2]
    潘振华, 范宝春, 归明月.T型管内流动气体中爆轰绕射过程的数值模拟[J].爆炸与冲击, 2014, 34(6):709-715. doi: 10.11883/1001-1455(2014)06-0709-07

    PAN Zhenhua, FAN Baochun, GUI Mingyue. Numerical investigation on evolution of detonation diffraction in moving gas inside a T-shaped channel[J]. Explosion and Shock Waves, 2014, 34(6):709-715. doi: 10.11883/1001-1455(2014)06-0709-07
    [3]
    赵焕娟, LEE J H S, 张英华, 等.边界条件对甲烷预混气爆轰特性的影响[J].爆炸与冲击, 2017, 37(2):201-207. doi: 10.11883/1001-1455(2017)02-0201-07

    ZHAO Huanjuan, LEE J H S, ZHANG Yinghua, et al. Effects of boundary conditions on premixed CH4+2O2 detonation characteristics[J]. Explosion and Shock Waves, 2017, 37(2):201-207. doi: 10.11883/1001-1455(2017)02-0201-07
    [4]
    CLANET C, SEARBY G. On the "Tulip flame" phenomenon[J]. Combustion and Flame, 1996, 105(1/2):225-238. https://www.sciencedirect.com/science/article/pii/0010218095001956
    [5]
    XIAO Huahua, SUN Jinhua, CHEN Peng. Experimental and numerical study of premixed hydrogen/air flame propagation in a combustion chamber[J]. Journal of Hazardous Materials, 2014, 268(3):132-139. https://www.sciencedirect.com/science/article/pii/S0304389413009928
    [6]
    PONIZY B, CLAVERIE A, VEYSSIERE B. Tulip flame:The mechanism of flame front inversion[J]. Combustion and Flame, 2014, 161(12):3051-3062. doi: 10.1016/j.combustflame.2014.06.001
    [7]
    GROGAN K P, IHME M. Weak and strong ignition of hydrogen/oxygen mixtures in shock-tube systems[J]. Proceedings of the Combustion Institute, 2015, 35(2):2181-2189. doi: 10.1016/j.proci.2014.07.074
    [8]
    GAO Wei, ZHONG Shengjun, MIAO Nan, et al. Effect of ignition on the explosion behavior of 1-Octadecanol/air mixtures[J]. Powder Technology, 2013, 241(3):105-114. https://www.sciencedirect.com/science/article/pii/S0032591013001812
    [9]
    XIAO Huahua, DUAN Qiangling, JIANG Lin, et al. Effects of ignition location on premixed hydrogen/air flame propagation in a closed combustion tube[J]. International Journal of Hydrogen Energy, 2014, 39(16):8557-8563. doi: 10.1016/j.ijhydene.2014.03.164
    [10]
    郑立刚, 吕先舒, 郑凯, 等.点火源位置对甲烷-空气爆燃超压特性的影响[J].化工学报, 2015, 66(7):2749-2756. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201507051.htm

    ZHENG Ligang, LV Xianshu, ZHENG Kai, et al. Influence of ignition position on overpressure of premixed methane-air deflagration[J]. CIESC Journal, 2015, 66(7):2749-2756. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201507051.htm
    [11]
    KINDRACK J, KOBIERA A, RARATA G, et al. Influence of ignition position and obstacles on explosion development in methane-air mixture in closed vessels[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6):551-561. https://www.sciencedirect.com/science/article/pii/S095042300700085X
    [12]
    PARK D J, LEE Y S. Experimental investigation of explosion pressures and flame propagations by wall obstruction ratios and ignition positions[J]. Korean Journal of Chemical Engineering, 2012, 29(2):139-144. doi: 10.1007/s11814-011-0159-5
    [13]
    李润之, 司荣军.低温环境下甲烷爆炸流场特性模拟[J].爆炸与冲击, 2015, 35(6):901-906. doi: 10.11883/1001-1455(2015)06-0901-06

    LI Runzhi, SI Rongjun. Simulation study of flow field characteristics[J]. Explosion and Shock Waves, 2015, 35(6):901-906. doi: 10.11883/1001-1455(2015)06-0901-06
    [14]
    XIAO Huahua, WANG Qingsong, HE Xuechao, et al. Experimental study on the behaviors and shape changes of premixed hydrogen-air flames propagation in horizontal duct[J]. International Journal of Hydrogen Energy, 2011, 36(10):6325-6336. doi: 10.1016/j.ijhydene.2011.02.049
    [15]
    孙从煌. 爆炸反应管的研制及管内气体燃爆特性研究[D]. 锦州: 辽宁工业大学, 2017: 32-35.
    [16]
    范宝春.两相系统的燃烧、爆炸和爆轰[M].北京:国防工业出版社, 1998:5-8.
    [17]
    CICCARELLI G, DOROFEEV S. Flame acceleration and transition detonation in ducts[J]. Progress in Energy and Combustion Science, 2008, 34(4):499-550. doi: 10.1016/j.pecs.2007.11.002
    [18]
    孙胜, 陈松, 吴超.尾矿库污染物传输过程的数值仿真研究及其经验[J].铁道科学与工程学报, 2012, 9(1):36-41. http://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201201008.htm

    SUN Sheng, CHEN Song, WU Chao. Research on the numerical simulation of the pollutant transferring of tailings and experiences[J]. Journal of Railway Science and Engineering, 2012, 9(1):36-41. http://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201201008.htm
    [19]
    陈先锋, 陈明, 张庆明, 等.瓦斯爆炸火焰精细结构及动力学特性的实验[J].煤炭学报, 2010, 35(2):246-249. http://www.cqvip.com/QK/96550X/201002/33014577.html

    CHEN Xianfeng, CHEN Ming, ZHANG Qingming, et al. Experimental investigation of gas explosion microstructure and dynamic characteristics in a semi-vented pipe[J]. Journal of China Coal Society, 2010, 35(2):246-249. http://www.cqvip.com/QK/96550X/201002/33014577.html
    [20]
    BI Mingshu, DONG Chengjie, ZHOU Yihui. Numerical simulation of premixed methane-air deflagration in large L/D closed pipes[J]. Applied Thermal Engineering, 2012, 40:337-342. doi: 10.1016/j.applthermaleng.2012.01.065
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (5078) PDF downloads(242) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return