Volume 38 Issue 4
May  2018
Turn off MathJax
Article Contents
REN Shaoyun. The leakage, low temperature diffusion and explosion of liquefied natural gas in open space[J]. Explosion And Shock Waves, 2018, 38(4): 891-897. doi: 10.11883/bzycj-2016-0323
Citation: REN Shaoyun. The leakage, low temperature diffusion and explosion of liquefied natural gas in open space[J]. Explosion And Shock Waves, 2018, 38(4): 891-897. doi: 10.11883/bzycj-2016-0323

The leakage, low temperature diffusion and explosion of liquefied natural gas in open space

doi: 10.11883/bzycj-2016-0323
  • Received Date: 2016-10-22
  • Rev Recd Date: 2017-03-08
  • Publish Date: 2018-07-25
  • It is known that low-temperature is apt to cause skin frost bite and material embrittlement, and that the propagation law of gas explosion is the foundation of explosion evolution and accident analysis. In this paper, we investigated the process of extensive gas leakage, gas mixing with air and explosion of the liquefied natural gas (LNG) in open space using numerical simulation. The results show that, as the diffusion distance increases, the lowest possible fluctuating temperature (i.e. temperature valley) of LNG increases, and this tendency gradually slows down; that the temperature is below 273 K in the area within 110 m away from the leakage center; that the temperature valley decreases almost linearly as the wind velocity increases. As the leakage time gets longer, the temperature valley decreases, and so does its decreasing tendency. With the distance from the leakage center getting longer, the peak overpressure increases at first and then decreases. In the area within 200 m away from the leakage center, the high temperature produced by the explosion may pose a hazard to human casualties.
  • loading
  • [1]
    ZHANG X, LI J, ZHU J, et al. Computational fluid dynamics study on liquefied natural gas dispersion with phase change of water[J]. International Journal of Heat and Mass Transfer, 2015, 91:347-354. doi: 10.1016/j.ijheatmasstransfer.2015.07.117
    [2]
    LUKETA-HANLIN A, KOOPMAN R P, ERMAK D L. On the application of computational fluid dynamics codes for liquefied natural gas dispersion[J]. Journal of Hazardous Materials, 2007, 140(3):504-517. doi: 10.1016/j.jhazmat.2006.10.023
    [3]
    王卿权. LNG动力船舶燃料罐火灾、爆炸事故后果数值研究[D]. 大连: 大连海事大学, 2014. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2583858
    [4]
    PLANAS E, PASTOR E, CASAL J, et al. Analysis of the boiling liquid expanding vapor explosion (BLEVE) of a liquefied natural gas road tanker: The Zarzalico accident[J]. Journal of Loss Prevention in the Process Industries, 2015, 34:127-138. doi: 10.1016/j.jlp.2015.01.026
    [5]
    REN S, ZHANG Q. Influence of concentration distribution of hydrogen in air on measured flammability limits[J]. Journal of Loss Prevention in the Process Industries, 2015, 34:82-91. doi: 10.1016/j.jlp.2015.01.027
    [6]
    GAVELLI F, BULLISTER E, KYTOMAA H. Application of CFD (Fluent) to LNG spills into geometrically complex environments[J]. Journal of Hazardous Materials, 2008, 159(1):158-168. doi: 10.1016/j.jhazmat.2008.02.037
    [7]
    SUN B, UTIKAR R P, PAREEK V K, et al. Computational fluid dynamics analysis of liquefied natural gas dispersion for risk assessment strategies[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1):117-128. doi: 10.1016/j.jlp.2012.10.002
    [8]
    KOOPMAN R P, CEDERWALL R T, ERMAK D L, et al. Analysis of Burro series 40 m3 LNG spill experiments[J]. Journal of Hazardous Materials, 1982, 6(1/2):43-83. https://www.researchgate.net/publication/236350847_Analysis_of_turbulent_wind-velocity_and_gas-concentration_fluctuations_during_the_Burro_series_40-msup_3_LNG_spill_experiments
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (5346) PDF downloads(236) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return