Citation: | REN Shaoyun. The leakage, low temperature diffusion and explosion of liquefied natural gas in open space[J]. Explosion And Shock Waves, 2018, 38(4): 891-897. doi: 10.11883/bzycj-2016-0323 |
[1] |
ZHANG X, LI J, ZHU J, et al. Computational fluid dynamics study on liquefied natural gas dispersion with phase change of water[J]. International Journal of Heat and Mass Transfer, 2015, 91:347-354. doi: 10.1016/j.ijheatmasstransfer.2015.07.117
|
[2] |
LUKETA-HANLIN A, KOOPMAN R P, ERMAK D L. On the application of computational fluid dynamics codes for liquefied natural gas dispersion[J]. Journal of Hazardous Materials, 2007, 140(3):504-517. doi: 10.1016/j.jhazmat.2006.10.023
|
[3] |
王卿权. LNG动力船舶燃料罐火灾、爆炸事故后果数值研究[D]. 大连: 大连海事大学, 2014. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2583858
|
[4] |
PLANAS E, PASTOR E, CASAL J, et al. Analysis of the boiling liquid expanding vapor explosion (BLEVE) of a liquefied natural gas road tanker: The Zarzalico accident[J]. Journal of Loss Prevention in the Process Industries, 2015, 34:127-138. doi: 10.1016/j.jlp.2015.01.026
|
[5] |
REN S, ZHANG Q. Influence of concentration distribution of hydrogen in air on measured flammability limits[J]. Journal of Loss Prevention in the Process Industries, 2015, 34:82-91. doi: 10.1016/j.jlp.2015.01.027
|
[6] |
GAVELLI F, BULLISTER E, KYTOMAA H. Application of CFD (Fluent) to LNG spills into geometrically complex environments[J]. Journal of Hazardous Materials, 2008, 159(1):158-168. doi: 10.1016/j.jhazmat.2008.02.037
|
[7] |
SUN B, UTIKAR R P, PAREEK V K, et al. Computational fluid dynamics analysis of liquefied natural gas dispersion for risk assessment strategies[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1):117-128. doi: 10.1016/j.jlp.2012.10.002
|
[8] |
KOOPMAN R P, CEDERWALL R T, ERMAK D L, et al. Analysis of Burro series 40 m3 LNG spill experiments[J]. Journal of Hazardous Materials, 1982, 6(1/2):43-83. https://www.researchgate.net/publication/236350847_Analysis_of_turbulent_wind-velocity_and_gas-concentration_fluctuations_during_the_Burro_series_40-msup_3_LNG_spill_experiments
|
[1] | CHENG Yuehua, WU Hao, CEN Guohua, ZHANG Yu. Design of ultra-high performance concrete shield against combined penetration and explosion of warheads[J]. Explosion And Shock Waves, 2025, 45(1): 013301. doi: 10.11883/bzycj-2024-0061 |
[2] | YANG Shigang, LUO Ze, XU Jiheng, FANG Qin, YANG Ya, XU Guolin, TANG Junjie. Failure modes of concrete structure under penetration and explosion[J]. Explosion And Shock Waves, 2024, 44(1): 015102. doi: 10.11883/bzycj-2023-0003 |
[3] | LI Tao, CHANG Lijun, CHEN Taiwei, LIU Junyuan, XIAO Songming, CAI Zhihua. Establishment and verification of a head finite element model based on explosion injury[J]. Explosion And Shock Waves, 2024, 44(12): 121424. doi: 10.11883/bzycj-2024-0173 |
[4] | MAO Wenzhe, ZHANG Guotao, YANG Shuaishuai, XU Zihui, WANG Yan, JI Wentao. Characteristics of hydrogenated magnesium dust explosion flame propagating in a semi-enclosed space[J]. Explosion And Shock Waves, 2024, 44(6): 065401. doi: 10.11883/bzycj-2023-0363 |
[5] | ZUO Jinjing, YANG Renshu, GONG Min, XIE Quanmin, ZHAO Yong, YOU Yuanyuan. On the distribution of explosion strain field and fracture field in segment charge[J]. Explosion And Shock Waves, 2023, 43(3): 035101. doi: 10.11883/bzycj-2022-0333 |
[6] | DONG Kai, REN Huiqi, RUAN Wenjun, HUANG Kui, BU Pengfei. Dynamic constitutive model of coral sand under blast loading[J]. Explosion And Shock Waves, 2021, 41(4): 043101. doi: 10.11883/bzycj-2020-0172 |
[7] | ZHU Xiaochao, ZHENG Ligang, YU Shuijun, WANG Yalei, LI Gang, DU Depeng, DOU Zengguo. Effect of blocking ratio on aluminum powder explosion’s characteristicsin vertical duct[J]. Explosion And Shock Waves, 2019, 39(10): 105402. doi: 10.11883/bzycj-2019-0006 |
[8] | JIANG Nan, Bi Yixing, LÜ Dong, WANG Lu, MU Yangyang. Explosion overpressure of hydrogen cloud in catalytic reforming process[J]. Explosion And Shock Waves, 2019, 39(2): 025403. doi: 10.11883/bzycj-2017-0371 |
[9] | WANG Yalei, ZHENG Ligang, YU Shuijun, ZHU Xiaochao, LI Gang, DU Depeng, DOU Zengguo. Effect of vented end faces on characteristics of methane explosion in duct[J]. Explosion And Shock Waves, 2019, 39(9): 095401. doi: 10.11883/bzycj-2018-0249 |
[10] | REN Shaoyun, XIA Dengyou. Gasoline vapor leakage and explosion law of an oil tank adjacent to fire[J]. Explosion And Shock Waves, 2019, 39(7): 072101. doi: 10.11883/bzycj-2018-0215 |
[11] | ZHAO Xiangyu, LI Hongbo, LI Zili, CUI Gan, FU Yang. Experimental study on the minimum ignition energy of methane at low temperature[J]. Explosion And Shock Waves, 2018, 38(2): 353-358. doi: 10.11883/bzycj-2016-0218 |
[12] | FAN Baolong, BAI Chunhua, WANG Bo, GAO Kanghua, LI Bin. Explosion overpressure field of natural gas in a large-scaled confined vessel[J]. Explosion And Shock Waves, 2018, 38(2): 404-408. doi: 10.11883/bzycj-2016-0191 |
[13] | Lin Zhenya, Chen Zhihua, Liu Ying, Hong Yanji. Influence of nonideal magnetic field on physical explosion of spherical heavy gas[J]. Explosion And Shock Waves, 2017, 37(3): 422-430. doi: 10.11883/1001-1455(2017)03-0422-09 |
[14] | Pan Jian-hua, Chen Xue-dong, Han Yu. Dynamic fracture toughness of S30408 austenitic stainless steel base and weld metals at -196 ℃[J]. Explosion And Shock Waves, 2013, 33(4): 381-386. doi: 10.11883/1001-1455(2013)04-0381-06 |
[15] | PAN Qiang, ZHANG Ji-chun, GUO Xue-bin. Theprincipleofsoilcompactionbyexplosion anditsexperimentalinvestigation[J]. Explosion And Shock Waves, 2011, 31(2): 165-172. doi: 10.11883/1001-1455(2011)02-0165-08 |
[16] | ZHENG Yu, LI Wen-bin, WANG Xiao-ming, FANG Shi-xin, WANG Ke-bo. Hydrocodeanalysisofdynamitesourceexplosion inRVSPprospectingofpetroleum[J]. Explosion And Shock Waves, 2010, 30(5): 472-478. doi: 10.11883/1001-1455(2010)05-0472-07 |
[17] | DONG Liang, YE Yang-sheng, CAI De-gou, YANG Nian-hua, WU Bo, LI Zhi-jun. Deformation behavior of soft soil ground under explosive loading[J]. Explosion And Shock Waves, 2007, 27(5): 461-467. doi: 10.11883/1001-1455(2007)05-0461-07 |
[18] | JU Yang, HUAN Xiao-feng, SONG Zhen-duo, TIAN Lu-lu, MAO Yan-zhe. Numerical analyses of blast wave stress propagation and damage evolution in rock masses[J]. Explosion And Shock Waves, 2007, 27(2): 136-142. doi: 10.11883/1001-1455(2007)02-0136-07 |
[19] | DU Xiu-li, LIAO Wei-zhang, TIAN Zhi-min, LI Liang. Dynamic response analysis of underground structures under explosion-induced loads[J]. Explosion And Shock Waves, 2006, 26(5): 474-480. doi: 10.11883/1001-1455(2006)05-0474-07 |
[20] | GUO Sheng-bing, PAN Yue-feng, GAO Pei-zheng, WANG Ming-yang, QIAN Qi-hu. Numerical simulation of explosion seismic waves[J]. Explosion And Shock Waves, 2005, 25(4): 335-340. doi: 10.11883/1001-1455(2005)04-0335-06 |
1. | 周宁,钱星伊,李雪,张倩,徐莹莹,余勇彬,梁依婷. 孔径对液化天然气泄漏扩散影响的数值模拟. 常州大学学报(自然科学版). 2025(02): 43-51 . ![]() | |
2. | 黄彩英,蒲红宇,潘灏航,文驭天. 气相乙烷管道泄漏扩散特征模拟分析. 化学工程. 2024(01): 64-69+81 . ![]() | |
3. | 聂超飞,朱浩宇,刘罗茜,李长俊,周芮,李康,贾文龙. 液相乙烷管道泄漏扩散规律与安全范围. 化学工程. 2024(12): 82-87 . ![]() | |
4. | 周楠,程桂敏,潘炎辉,李红宇,谢永迅,张金鹏. 民居内燃气泄漏爆炸特性及其数值仿真研究进展. 中国安全生产科学技术. 2023(02): 159-166 . ![]() | |
5. | 舒雅,陈桦,张洁玉,唐二明. 某LNG装车区槽罐车液化天然气泄漏风险数值模拟. 消防科学与技术. 2023(02): 221-225 . ![]() | |
6. | 李静野,蒋新生,余彬彬,王春辉,王子拓. 大尺度开敞空间油料蒸气云爆炸超压与火焰传播机制研究. 爆炸与冲击. 2022(03): 160-175 . ![]() | |
7. | 肖志诚,吕良海,白光,尹鑫伟,姚伟. 障碍物对居民户内燃气泄漏扩散特征影响研究. 安全. 2022(03): 33-38 . ![]() | |
8. | 周宁,张倩,李雪,陈力,刘晅亚,吕孝飞,黄维秋,赵会军. 风速对LNG泄漏扩散过程影响的数值模拟. 安全与环境学报. 2021(01): 285-294 . ![]() | |
9. | 王秋红,王力文,蒋军成,张明广,李鑫. 城镇地埋天然气管道泄漏诱发气云爆炸仿真. 中国安全科学学报. 2021(09): 75-82 . ![]() | |
10. | 王秋红,孙艺林,李鑫,蒋军成,张明广,王刘兵. 乙烯储罐气体泄漏诱发蒸气云爆炸的数值模拟. 爆炸与冲击. 2020(12): 121-133 . ![]() | |
11. | 程新求,李振泉. 基于扩散分子的动力学及其化工应用研究. 当代化工. 2019(08): 1797-1800 . ![]() | |
12. | 李少鹏,陈国华,赵杰,张强,胡盛,董浩宇. 开敞空间可燃气云爆炸冲击波超压及灾害动力响应研究评述. 中国安全生产科学技术. 2019(11): 11-17 . ![]() | |
13. | 陈晓坤,李鑫,王秋红,蒋军成,张明广,罗振敏,王刘兵. 乙烯球罐区多源泄漏爆炸数值仿真. 西安科技大学学报. 2019(06): 957-964 . ![]() |