Volume 38 Issue 4
May  2018
Turn off MathJax
Article Contents
WEN Lijing, ZHANG Chunming, GUO Chao, DUAN Pu, ZHANG Liansheng, DUAN Zhuoping. Impact load characteristics of aircraft model impacting steel-reinforced concrete[J]. Explosion And Shock Waves, 2018, 38(4): 811-819. doi: 10.11883/bzycj-2016-0337
Citation: WEN Lijing, ZHANG Chunming, GUO Chao, DUAN Pu, ZHANG Liansheng, DUAN Zhuoping. Impact load characteristics of aircraft model impacting steel-reinforced concrete[J]. Explosion And Shock Waves, 2018, 38(4): 811-819. doi: 10.11883/bzycj-2016-0337

Impact load characteristics of aircraft model impacting steel-reinforced concrete

doi: 10.11883/bzycj-2016-0337
  • Received Date: 2016-11-02
  • Rev Recd Date: 2017-07-21
  • Publish Date: 2018-07-25
  • To investigate the calculation method and the characteristics of the impact load for a large commercial aircraft impacting a nuclear power plant, we developed an integral test measurement system using the experiments of aircraft models impacting a movable steel-reinforced concrete target via a rocket sled loading test platform, and carried out two impact tests on two aircraft models of different sizes. In the two tests, the flying attitude and velocity of the aircraft models and the whole impact process were recorded using a high-speed photography system, and the acceleration and velocity time histories of the target were obtained using an acceleration measurement system and a displacement interferometer system for any reflector (DISAR), respectively. The computed results of the impact loads calculated by the measured acceleration and velocity data, respectively, were found to agree well, verifying the reliability of the measurement system. Moreover, we obtained the acceleration time histories of the aircraft models using the onboard overload storage, and calculated the crushing load of the aircraft model based on the measured data. On the other hand, we also calculated the impact load time histories using the modified Riera equation. Compared the impact load history calculated from the measured acceleration data of the aircraft model with that calculated from the measured acceleration data of the target, the modified Riera model was verified and the coefficient α was determined.
  • loading
  • [1]
    U. S. Nuclear Regulatory Commission. Domestic licensing of production and utilization facilities: 10 CFR Part 50[R]. Washington D C: U. S. Nuclear Regulatory Commission, 2009.
    [2]
    国家核安全局. 核动力厂设计安全规定: HAF102[R]. 北京: 国家核安全局, 2016.
    [3]
    U. S. Nuclear Regulatory Commission. Guidance for the assessment of beyond-design-basis aircraft impacts: RG 1. 217[R]. Washington D C: U. S. Nuclear Regulatory Commission, 2011.
    [4]
    Nuclear Energy Institute. Methodology for performing aircraft impact assessments for new plant designs: NEI 97-13[R]. Walnut Creek: ERIN Engineering & Research, Inc., 2011.
    [5]
    RIERA J D. On the stress analysis of structures subjected to aircraft impact forces[J]. Nuclear Engineering and Design, 1968, 8(4):415-426. doi: 10.1016/0029-5493(68)90039-3
    [6]
    DRITTLER K, GRUNER P. The force resulting from impact of fast-flying military aircraft upon a rigid wall[J]. Nuclear Engineering and Design, 1976, 37(2):245-248. doi: 10.1016/0029-5493(76)90019-4
    [7]
    HORNYIK K. Analytic modeling of the impact of soft missiles on protective walls[C]//Transactions of the 4th International Conference on Structural Mechanics in Reactor Technology. San Francisco, USA: International Association for Structural Mechanics in Reactor Technology, 1977: 1-12. https://repository.lib.ncsu.edu/handle/1840.20/27857
    [8]
    KAR A K. Impactive effects of tornado missiles and aircraft[J].Journal of the Structural Division, 1979, 105(11):2243-2260. http://www.researchgate.net/publication/279587655_Impactive_Effects_of_Tornado_Missiles_and_Aircraft
    [9]
    EIBL J. Soft and hard impact[C]//Proceedings of the FIP Congress. Edinburgh, Scotland: The Concrete Society, Concrete for Hazard Protection, 1987: 175-186.
    [10]
    KOECHLIN P, POTAPOV S. Classification of soft and hard impacts: Application to aircraft crash[J]. Nuclear Engineering and Design, 2009, 239(4):613-618. doi: 10.1016/j.nucengdes.2008.10.016
    [11]
    SUGANO T, TSUBOTA H, KASAI Y, et al. Full-scale aircraft impact test for evaluation of impact force[J]. Nuclear Engineering and Design, 1993, 140(3):373-385. doi: 10.1016/0029-5493(93)90119-T
    [12]
    ARROS J, DOUMBALSKI N. Analysis of aircraft impact to concrete structures[J]. Nuclear Engineering and Design, 2007, 237(12/13):1241-1249. http://www.sciencedirect.com/science/article/pii/S0029549306005875
    [13]
    KOSTOV M, HENKEL F O, ANDONOV A. Safety assessment of A92 reactor building for large commercial aircraft crash[J]. Nuclear Engineering and Design, 2014, 269:262-267. doi: 10.1016/j.nucengdes.2013.08.038
    [14]
    王远功, 余爱萍.飞机撞击核反应堆安全壳荷载-时间曲线的确定[J].核科学与工程, 1991, 11(3):208-215. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200708002027.htm

    WANG Yuangong, YU Aiping. The determination of load-time curve for a reactor containment which undergoes the impact of an airplane[J]. Chinese Journal of Nuclear Science and Engineering, 1991, 11(3):208-215. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200708002027.htm
    [15]
    左家红.秦山核电厂安全壳在飞机撞击下的非线性分析[J].核科学与工程, 1992, 12(1), 35-42. http://www.cqvip.com/QK/98044X/199004/273561.html

    ZUO Jiahong. Non-linear analysis of Qinshan NPP containment under missile impact[J]. Chinese Journal of Nuclear Science and Engineering, 1992, 12(1):35-42. http://www.cqvip.com/QK/98044X/199004/273561.html
    [16]
    王晓雯, 王明弹, 夏祖讽. 先进半球顶安全壳在飞机撞击下的动态响应分析[C]//第15届全国反应堆结构力学会议论文集. 北京: 原子能出版社, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7090892
    [17]
    汤搏.关于核电厂防大型商用飞机撞击的要求——核电发展面临的新挑战[J].核安全, 2010(3):1-12. http://mall.cnki.net/magazine/Article/HAQY201003003.htm

    TANG Bo. Discussion on the impact of large commercial airplane to nuclear power plant[J]. Nuclear Safety, 2010(3):1-12. http://mall.cnki.net/magazine/Article/HAQY201003003.htm
    [18]
    徐征宇.机撞击核岛屏蔽厂房的有限元分析[J].核科学与工程, 2010, 30(增刊1):309-313. https://www.wenkuxiazai.com/doc/2587c5e025c52cc58ad6be81.html

    XU Zhengyu. Finite element analysis for aircraft impact to shield building[J]. Chinese Journal of Nuclear Science and Engineering, 2010, 30(Suppl 1):309-313. https://www.wenkuxiazai.com/doc/2587c5e025c52cc58ad6be81.html
    [19]
    刘晶波, 郑文凯.大型商用飞机撞击核电站屏蔽厂房荷载研究[J].振动与冲击, 2014, 33(6):97-101. doi: 10.13465/j.cnki.jvs.2014.06.018.html

    LIU Jingbo, ZHENG Wenkai. Impact load analysis on a nuclear power plant impacted by a large commercial aircraft[J]. Journal of Vibration and Shock, 2014, 33(6):97-101. doi: 10.13465/j.cnki.jvs.2014.06.018.html
    [20]
    曹健伟, 方秦, 龚自明, 等.商用客机对核安全壳撞击破坏效应的数值模拟分析[J].工程力学, 2014, 31(9):63-70. http://www.oalib.com/paper/4192598

    CAO Jianwei, FANG Qin, GONG Ziming, et al. Numerical investigation on response and damage of nuclear containments under aircraft impact[J]. Engineering Mechanics, 2014, 31(9):63-70. http://www.oalib.com/paper/4192598
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article Metrics

    Article views (5372) PDF downloads(215) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return