Citation: | DENG Yongjun, SONG Wenjie, CHEN Xiaowei, YAO Yong. A dynamic cavity-expansion penetration model of compressible elastic-plastic response for reinforced concrete targets[J]. Explosion And Shock Waves, 2018, 38(5): 1023-1030. doi: 10.11883/bzycj-2017-0043 |
[1] |
BISHOP R F, HILL R, MOTT N F. The theory of indentation and hardness tests[J]. Proceedings of the Physical Society, 1945, 57(57):147-159. http://cn.bing.com/academic/profile?id=42fa426552499af2730afd0f2326dcff&encoded=0&v=paper_preview&mkt=zh-cn
|
[2] |
GOODIER J N. On the mechanics of indentation and cratering in the solid targets of strain-hardening metal by impact of hard and soft spheres[C]//Proceedings of the 7th Symposium on Hypervelocity Impact Ⅲ, 1965: 215-259.
|
[3] |
CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics[J]. International Journal of Impact Engineering, 2002, 27(6):619-637. doi: 10.1016/S0734-743X(02)00005-2
|
[4] |
YANKELEVSKY D Z. Local response of concrete slabs to low velocity missile impact[J]. International Journal of Impact Engineering, 1997, 19(4):331-343. doi: 10.1016/S0734-743X(96)00041-3
|
[5] |
FORRESTAL M J, ALTMAN B S, CARGILE J D, et al.An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1994, 15(4):395-405. doi: 10.1016/0734-743X(94)80024-4
|
[6] |
FORRESTAL M J, LUK V K. Penetration into soil targets[J]. International Journal of Impact Engineering, 1992, 12(3):427-444. doi: 10.1016/0734-743X(92)90167-R
|
[7] |
FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids & Strchture, 1997, 28(5):4127-4146. http://cn.bing.com/academic/profile?id=9f6cbc41cc8e41622e2eccbe35f1dfdd&encoded=0&v=paper_preview&mkt=zh-cn
|
[8] |
LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile[J]. International Journal of Impact Engineering, 2003, 28(1):93-116. doi: 10.1016/S0734-743X(02)00037-4
|
[9] |
周宁, 任辉启, 沈兆武, 等.侵彻钢筋混凝土过程中弹丸过载特性的实验研究[J].实验力学, 2006, 21(5):572-578. doi: 10.3969/j.issn.1001-4888.2006.05.005
ZHOU Ning, REN Huiqi, SHEN Zhaowu, et al. Experimental study on overload characteristics of projectile penetrating reinforced concrete[J]. Journal of Experimental Mechanics, 2006, 21(5):572-578. doi: 10.3969/j.issn.1001-4888.2006.05.005
|
[10] |
LUK V K, FORRESTAL M J. Penetration into semi-finite reinforced concrete targets with spherical and ogival nose projectiles[J]. International Journal of Impact Engineering, 1987, 6(4):291-301. doi: 10.1016/0734-743X(87)90096-0
|
[11] |
KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects[J]. Nuclear Engineering & Design, 1976, 37(2):183-203. doi: 10.1016-0029-5493(76)90015-7/
|
[12] |
SLITER G E. Assessment of empirical concrete impact formulas[J]. Journal of Structural Division, 1980, 106(5):1023-1045. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0234878418
|
[13] |
RIERA J D. Penetration, scabbing and perforation of concrete structure hit by solid missile[J]. Nuclear Engineering & Design, 1989, 115(1):121-131. http://cn.bing.com/academic/profile?id=33c858ea7b7830764e9470bb68f27f06&encoded=0&v=paper_preview&mkt=zh-cn
|
[14] |
BARR P. Guidelines for the design and assessment of concrete structures subjected to impact[R]. London: HMSO, 1990.
|
[15] |
DANCYGIER A N. Effect of reinforcement ratio on the resistance of reinforced concrete to hard projectile impact[J]. Nuclear Engineering & Design, 1997, 172(1):233-245. http://cn.bing.com/academic/profile?id=723b6881b18fa7ba33bf200ca91ae81f&encoded=0&v=paper_preview&mkt=zh-cn
|
[16] |
CHEN X W, LI X L, CHEN Y Z, et al. Normal perforation of reinforced concrete target by rigid projectile[J]. International Journal of Impact Engineering, 2008, 35(14):1119-1129. http://cn.bing.com/academic/profile?id=c08e64272931d28d2d5412ef1635ac16&encoded=0&v=paper_preview&mkt=zh-cn
|
[17] |
PRESS W H, FLANNERY B P, TEUKOLSKY S A, et al. Numerical recipes, the art of scientific computing[M]. New York:Cambridge University Press, 1989.
|
[18] |
FORRESTAL M J, LUK V K. Dynamic spherical cavity expansion in a compressible elastic-plastic solid[J]. Journal of Applied Mechanics, 1988, 55(2):275-279. doi: 10.1115/1.3173672
|
[19] |
HOPKINS H G. Dynamic expansion of spherical cavities in metals[M]//Sneddon I N, Hill R. Progress in Solid Mechanics. New York: North-Holland Publishing Company, 1960
|
[1] | WANG Wu, YANG Jun, WANG Anbao, LI Shengjie. Resistance equation of projectile penetrating into reinforced concrete shield[J]. Explosion And Shock Waves, 2025, 45(3): 033301. doi: 10.11883/bzycj-2024-0217 |
[2] | ZHANG Haipeng, PAN Zuanfeng, SI Doudou. Numerical simulation on dynamic response of reinforced concrete beams to secondary explosion[J]. Explosion And Shock Waves, 2024, 44(10): 101404. doi: 10.11883/bzycj-2024-0021 |
[3] | LI Shengtong, WANG Wei, LIANG Shifa, SANG Qinyang, ZHENG Rongyue. Dynamic response of beam-slab composite structures under long-lasting explosion shock wave load[J]. Explosion And Shock Waves, 2022, 42(7): 075103. doi: 10.11883/bzycj-2021-0495 |
[4] | LIU Junwei, ZHANG Xianfeng, ZHAO Yaoyao, WEI Haiyang, LIU Chuang, LI Pengcheng. Failure modes and response characteristics of finite-thickness aluminum targets under normal penetration of elliptical cross-section projectiles[J]. Explosion And Shock Waves, 2022, 42(12): 123301. doi: 10.11883/bzycj-2022-0249 |
[5] | WANG Kehui, ZHOU Gang, LI Ming, ZOU Huihui, WU Haijun, GENG Baogang, DUAN Jian, DAI Xianghui, SHEN Zikai, LI Pengjie, GU Renhong. Experimental research on the mechanism of a high-velocity projectile penetrating into a reinforced concrete target[J]. Explosion And Shock Waves, 2021, 41(11): 113302. doi: 10.11883/bzycj-2020-0463 |
[6] | SONG Min, ZHANG Jie, CHEN Qingqing, WANG Zhiyong, WANG Zhihua. Fracture behaviors of lightly reinforced concrete beams under different loading rates[J]. Explosion And Shock Waves, 2021, 41(6): 063102. doi: 10.11883/bzycj-2020-0121 |
[7] | DENG Yongjun, CHEN Xiaowei, ZHONG Weizhou, HE Liling. Experimental and numerical study on normal penetration of a projectile into a reinforced concrete target[J]. Explosion And Shock Waves, 2020, 40(2): 023101. doi: 10.11883/bzycj-2019-0001 |
[8] | LIU Yongyou, YANG Huawei, ZHANG Jie, WANG Zhiyong, WANG Zhihua. A resistance model for a rigid flat projectile penetrating a reinforced concrete target[J]. Explosion And Shock Waves, 2020, 40(3): 033301. doi: 10.11883/bzycj-2018-0389 |
[9] | FU Yingqian, YU Xiaoru, DONG Xinlong, ZHOU Fenghua, LI Ping. An experimental study of dynamic bond-slip behaviors of plain steel barsin concrete at different strain rates[J]. Explosion And Shock Waves, 2019, 39(6): 064102. doi: 10.11883/bzycj-2018-0513 |
[10] | MA Tianbao, WU Jun, NING Jianguo. Experimental and numerical study on projectiles’ high-velocity penetration into reinforced concrete[J]. Explosion And Shock Waves, 2019, 39(10): 103301. doi: 10.11883/bzycj-2018-0275 |
[11] | WEN Lijing, ZHANG Chunming, GUO Chao, DUAN Pu, ZHANG Liansheng, DUAN Zhuoping. Impact load characteristics of aircraft model impacting steel-reinforced concrete[J]. Explosion And Shock Waves, 2018, 38(4): 811-819. doi: 10.11883/bzycj-2016-0337 |
[12] | Gao Fei, Wang Mingyang, Zhang Xianfeng, He Yong, Li Mengshen. A comment on the calculation models for reinforced concrete under intense dynamic loading[J]. Explosion And Shock Waves, 2017, 37(2): 365-376. doi: 10.11883/1001-1455(2017)02-0365-12 |
[13] | WANG Wei, ZHANG Duo, LU Fang-yun, TANG Fu-jing, WANG Song-chuan. Anti-explosionperformancesofsquarereinforcedconcreteslabs underclose-inexplosions[J]. Explosion And Shock Waves, 2012, 32(3): 251-258. doi: 10.11883/1001-1455(2012)03-0251-08 |
[14] | DUAN Zhuo-ping, WEN Li-jing, ZHANG Lian-sheng, HUANG Feng-lei. Performancetestandapplicationofthemulti-pointringinitiator forashapedcharge[J]. Explosion And Shock Waves, 2010, 30(6): 664-668. doi: 10.11883/1001-1455(2010)06-0664-05 |
[15] | Lou-Jian-Feng, WANG Zheng, ZHU Jian-Shi, ZHANG Feng-Guo, HONG Tao. Effects of reinforcement ratio and impact position on anti-penetration properties of reinforced concrete[J]. Explosion And Shock Waves, 2010, 30(2): 178-182. doi: 10.11883/1001-1455(2010)02-0178-05 |
[16] | LI Zhi-kang, HUANG Feng-lei. A dynamic spherical cavity-expansion theory for concrete materials[J]. Explosion And Shock Waves, 2009, 29(1): 95-100. doi: 10.11883/1001-1455(2009)01-0095-06 |
[17] | QU Ming, CHEN Xiao-wei. Numerical simulations on perforation of reinforced concrete targets[J]. Explosion And Shock Waves, 2008, 28(4): 341-349. doi: 10.11883/1001-1455(2008)04-0341-09 |
[18] | ZHOU Ning, REN Hui-qi, SHEN Zhao-wu, HE Xiang, LIU Rui-zhao, WU Biao. An engineering analytical model for projectiles to penetrate into semi-infinite reinforced concrete targets[J]. Explosion And Shock Waves, 2007, 27(6): 529-534. doi: 10.11883/1001-1455(2007)06-0529-06 |
[19] | WANG Ming-yang, ZHENG Da-liang, BAI Xiao-yan. Theoretical study on the perforation of reinforced concrete with back-up steel plate(RCBSP) by projectiles[J]. Explosion And Shock Waves, 2005, 25(4): 289-295. doi: 10.11883/1001-1455(2005)04-0289-07 |