Citation: | LI Rui, HUANG Zhengxiang, ZU Xudong, XIAO Qiangqiang, JIA Xin. Spallation of targets subjected to vertical penetraion of explosively-formed projectiles[J]. Explosion And Shock Waves, 2018, 38(5): 1039-1044. doi: 10.11883/bzycj-2017-0055 |
[1] |
RINEHART J S, PEARSON J. Conical surfaces of fracture produced by asymmetrical impulsive loading[J]. Journal of Applied Physics, 1952, 23(6):685-687. doi: 10.1063/1.1702279
|
[2] |
RINEHART J S. Stress transients in solids[M]. Santa Fe, New Mexico:HyperDynamics, 1975:212-215.
|
[3] |
REN Bo, LI Shaofan, QIAN Jing, et al. Meshfree simulations of spall fracture[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(5/6/7/8):797-811. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0224104199
|
[4] |
YU V B, SAVELEVA N V, NAIMARK O B. Numerical simulation of dynamic failure and multi spall fracture in metals[J]. Journal of Physics:Conference Series, 2016, 774(1):012063. http://cn.bing.com/academic/profile?id=f83b063994a23613a1a8bcd0d00584f5&encoded=0&v=paper_preview&mkt=zh-cn
|
[5] |
杜忠华.动能弹侵彻陶瓷复合装甲机理[D].南京: 南京理工大学, 2002: 61-64. http://cdmd.cnki.com.cn/Article/CDMD-10288-2003104675.htm
|
[6] |
陈大年, 谭华, 俞宇颖, 等.一种基于空穴聚集的层裂模型[J].爆炸与冲击, 2006, 26(2):97-104. doi: 10.3321/j.issn:1001-1455.2006.02.001
CHEN Danian, TAN Hua, YU Yuying, et al. A spallation model based on hole coalescence[J]. Explosion and Shock Waves, 2006, 26(2):97-104. doi: 10.3321/j.issn:1001-1455.2006.02.001
|
[7] |
刘飞, 唐献述, 任新见.接触爆炸作用下钢板层裂效应数值分析[J].工程爆破, 2011, 17(2):15-18. doi: 10.3969/j.issn.1006-7051.2011.02.004
LIU Fei, TANG Xianshu, REN Xinjian. Numerical analysis of spall effect of steel plate under contact explosion[J]. Engineering Blasting, 2011, 17(2):15-18. doi: 10.3969/j.issn.1006-7051.2011.02.004
|
[8] |
魏波.冲击载荷下材料层裂的数值模拟[D].南京: 南京理工大学, 2013: 20-51. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2275664
|
[9] |
王礼立.应力波基础[M].北京:国防工业出版社, 2005:238-239.
|
[10] |
ZU X, HUANG Z, XIAO Q, et al. Theoretical study on equivalent target of ceramic composite armor[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(4):576-582. doi: 10.1002/prep.v40.4
|
[11] |
HELD M. Verification of the equation for radial crater growth by shaped charge jet penetration[J]. International Journal of Impact Engineering, 1995, 17(1/2/3):387-398. doi: 10.1016-0734-743X(95)99864-N/
|
[12] |
NEUBERGER A, PELES S, RITTEL D. Scaling the response of circular plates subjected to large and close-range spherical explosions. Part Ⅰ:Air-blast loading[J]. International Journal of Impact Engineering, 2007, 34(5):859-873 doi: 10.1016/j.ijimpeng.2006.04.001
|
[1] | ZHOU Dezheng, LI Xiaojie, WANG Xiaohong, WANG Yuxin, YAN Honghao. Analysis of internal load and dynamic response of vacuum explosion containment vessel with sand covered for explosive welding[J]. Explosion And Shock Waves, 2024, 44(10): 101407. doi: 10.11883/bzycj-2023-0455 |
[2] | ZHANG Zhifan, LI Hailong, ZHANG Guiyong, ZONG Zhi, JIANG Yichen. Action time sequence of underwater explosion shock waves and shaped charge projectiles[J]. Explosion And Shock Waves, 2023, 43(10): 102201. doi: 10.11883/bzycj-2022-0397 |
[3] | LIU Jun, SUN Zhiyuan, ZHANG Fengguo, WANG Pei. Simulation study of the recompression of metal spallation zone[J]. Explosion And Shock Waves, 2022, 42(3): 033101. doi: 10.11883/bzycj-2021-0262 |
[4] | WANG Min, WEN Heming. Numerical simulations of response and failure of carbon nanotube/carbon fibre reinforced plastic laminates under impact loading[J]. Explosion And Shock Waves, 2022, 42(3): 033102. doi: 10.11883/bzycj-2021-0050 |
[5] | CHENG Xiangli, ZHAO Hui, LI Linchuan, YE Haifu. Projectile target response model for normal penetration process based on mechanical vibration theory[J]. Explosion And Shock Waves, 2019, 39(9): 093301. doi: 10.11883/bzycj-2018-0242 |
[6] | XING Boyang, LIU Rongzhong, ZHANG Dongjiang, CHEN Liang, HOU Yunhui, GUO Rui. A mass model for behind-armor debris generated by normal penetration of a variable cross-section explosively-formed projectile into an armor steel plate[J]. Explosion And Shock Waves, 2019, 39(7): 074202. doi: 10.11883/bzycj-2018-0187 |
[7] | CHEN Xiaokun, LI Haitao, WANG Qiuhong, JIN Yongfei, DENG Jun, ZHANG Yanni. Antiknock analysis and structure optimization for coal mine cylindrical shell refuge capsule under gas explosion load[J]. Explosion And Shock Waves, 2018, 38(1): 124-132. doi: 10.11883/bzycj-2016-0248 |
[8] | WANG Wenjie, ZHANG Xianfeng, DENG Jiajie, ZHENG Yingmin, LIU Chuang. Analysis of projectile penetrating into mortar target with elliptical cross-section[J]. Explosion And Shock Waves, 2018, 38(1): 164-173. doi: 10.11883/bzycj-2017-0020 |
[9] | LI Xue-mei, WANG Xiao-song, WANG Peng-lai, LU Min, JIA Lu-feng. Spall of cylindrical copper by converging sliding detonation[J]. Explosion And Shock Waves, 2009, 29(2): 162-166. doi: 10.11883/1001-1455(2009)02-0162-05 |
[10] | ZHANG Lei, HU Shi-sheng, CHEN De-xing, ZHANG Shou-bao, YU Ze-qing, LIU Fei. Spall fracture properties of steel-fiber-reinforced concrete[J]. Explosion And Shock Waves, 2009, 29(2): 119-124. doi: 10.11883/1001-1455(2009)02-0119-06 |
[11] | CHEN Yong-tao, TANG Xiao-jun, LI Qing-zhong, HU Hai-bo, XU Yong-bo. Phase transition and abnormal spallation in pure iron[J]. Explosion And Shock Waves, 2009, 29(6): 637-641. doi: 10.11883/1001-1455(2009)06-0637-05 |
[12] | XIONG Jun, ZHOU Hai-bing, LIU Wen-tao, ZHANG Shu-dao, SUN Jin-shan. Spallation of steel tube driven by sliding detonation[J]. Explosion And Shock Waves, 2008, 28(2): 105-109. doi: 10.11883/1001-1455(2008)02-0105-05 |
[13] | ZHANG Lei, HU Shi-sheng, CHEN De-xing, ZHANG Shou-bao, YU Ze-qing, LIU Fei. Spall characteristics of concrete materials[J]. Explosion And Shock Waves, 2008, 28(3): 193-199. doi: 10.11883/1001-1455(2008)03-0193-07 |
[14] | TAN Duo-wang, SUN Cheng-wei. Progress in studies on shaped charge[J]. Explosion And Shock Waves, 2008, 28(1): 50-56. doi: 10.11883/1001-1455(2008)01-0050-07 |
[15] | JIANG Song-qing, LIU Wen-tao. Numerical modeling of spall fracture behavior in U-Nb alloys[J]. Explosion And Shock Waves, 2007, 27(6): 481-486. doi: 10.11883/1001-1455(2007)06-0481-06 |
[16] | ZHANG Xin-hua, TANG Zhi-ping, XU Wei-wei, TANG Xiao-jun, ZHENG Hang. Experimental study on characteristics of shock-induced phase transition and spallation in FeMnNi alloy[J]. Explosion And Shock Waves, 2007, 27(2): 103-108. doi: 10.11883/1001-1455(2007)02-0103-06 |
[17] | XIE Shu-gang, FAN Chun-lei, CHEN Da-nian, WANG Huan-ran. Experimental and numerical studies on spall of OFHC[J]. Explosion And Shock Waves, 2006, 26(6): 532-536. doi: 10.11883/1001-1445(2006)06-0532-05 |
[18] | TANG Xiao-jun, HU Hai-bo, LI Qing-zhong, ZHANG Xing-hua, TANG Zhi-ping, HU Ba-yi, TANG Tie-gang. Experimental studies on shock-induced phase transition in HR2 and other Fe-based materials[J]. Explosion And Shock Waves, 2006, 26(2): 115-120. doi: 10.11883/1001-1455(2006)02-0115-06 |
[19] | WANG Yong-gang, HE Hong-liang, CHEN Den-ping, WANG Li-li, JING Fu-qian. Comparison of different spall models for simulating spallation in ductile metals[J]. Explosion And Shock Waves, 2005, 25(5): 467-471. doi: 10.11883/1001-1455(2005)05-0467-05 |
[20] | ZHOU Xiang, LONG Yuan, YUE Xiao-bing, TANG Xian-shu. An engineering computing method for the velocity of explosively-formed-projectile(EFP) based on the law of energy conservation[J]. Explosion And Shock Waves, 2005, 25(4): 378-381. doi: 10.11883/1001-1455(2005)04-0378-04 |
1. | 陈玉,卢旭东,李建普. 基于AUTODYN的EFP动能干扰协同作用仿真研究. 科技创新与应用. 2024(14): 1-4 . ![]() | |
2. | 王高辉,孔维伟,卢文波,潘鑫豪,舒奕展. 高拱坝坝后侵彻爆炸毁伤效应分析. 武汉大学学报(工学版). 2024(07): 853-862 . ![]() | |
3. | 杨明,武海彬,伍奕,徐奎,谢萍,李明智,何阳华. 不同接触条件下爆源爆炸对钢板破坏影响的试验研究. 安全与环境学报. 2022(04): 1878-1884 . ![]() | |
4. | 武天宇,朱建生,陈朋,伍惊涛. EFP战斗部毁伤效应研究. 火工品. 2021(05): 28-31 . ![]() | |
5. | 邢柏阳,刘荣忠,张东江,陈亮,侯云辉,郭锐. 变截面爆炸成型弹丸垂直侵彻装甲钢板靶后破片质量模型. 爆炸与冲击. 2019(07): 118-128 . ![]() |