Volume 38 Issue 5
Jul.  2018
Turn off MathJax
Article Contents
FU Rongyao, SUN Yaohong, XU Xuzhe, YAN Ping. Effect of hydrostatic pressure on fracture of rock subjected to plasma impact[J]. Explosion And Shock Waves, 2018, 38(5): 1051-1056. doi: 10.11883/bzycj-2017-0057
Citation: FU Rongyao, SUN Yaohong, XU Xuzhe, YAN Ping. Effect of hydrostatic pressure on fracture of rock subjected to plasma impact[J]. Explosion And Shock Waves, 2018, 38(5): 1051-1056. doi: 10.11883/bzycj-2017-0057

Effect of hydrostatic pressure on fracture of rock subjected to plasma impact

doi: 10.11883/bzycj-2017-0057
  • Received Date: 2017-02-22
  • Rev Recd Date: 2017-04-24
  • Publish Date: 2018-09-25
  • In order to understand the fracture law of rock by shock wave in deep water, an electric pulse fracturing device with hydrostatic pressure up to 35 MPa was established, which can simulate the confining pressure of 3 000 m underground. The experiments of plasma impact fracturing under different hydrostatic pressures were carried out. The maximum operating parameter of the fracturing device is 20 kV/40 kJ. Six sandstones were fractured by electric pulse under the hydrostatic pressure which ranges from 0 to 25 MPa. The experimental results show that the length and width of fracture decrease significantly with the increase of hydrostatic pressure under the same energy. So the destroy range of shock wave decreases and the porosity and permeability decline with the increase of confining pressure. The hydrostatic pressure has obvious influence on the formation, distribution and growth of the crack after impact fracture. Compared with the cracks formed by atmospheric pressure, cracks are concentrated in the electrode. The number of cracks is more but the length is shorter and there are different degrees of bending, even annular cracks occur in the local area.
  • loading
  • [1]
    石崇兵, 李传乐.高能气体压裂技术的发展趋势[J].西安石油学院学报, 2000, 15(5):17-21. doi: 10.3969/j.issn.1673-064X.2000.05.006

    SHI Chongbing, LI Chuanle. Development tendency of high energy gas fracturing technique[J]. Journal of Xi'an Petroleum Institute, 2000, 15(5):17-21. doi: 10.3969/j.issn.1673-064X.2000.05.006
    [2]
    张保平, 方竞, 田国荣, 等.水力压裂中的近井筒效应[J].岩石力学与工程学报, 2004, 23(14):2476-2479. doi: 10.3321/j.issn:1000-6915.2004.14.034

    ZHANG Baoping, FANG Jing, TIAN Guorong, et al. Near wellbore effects in hydraulic fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(14):2476-2479. doi: 10.3321/j.issn:1000-6915.2004.14.034
    [3]
    周健, 陈勉, 金衍, 等.裂缝性储层水力裂缝扩展机理试验研究[J].石油学报, 2007, 28(5):109-113. doi: 10.3321/j.issn:0253-2697.2007.05.020

    ZHOU Jian, CHEN Mian, JIN Yan, et al. Experimental study on propagation mechanism of hydraulic fracture in naturally fractured reservoir[J]. Acta Petrolei Sinica, 2007, 28(5):109-113. doi: 10.3321/j.issn:0253-2697.2007.05.020
    [4]
    RUTGERS W R, JONG I D. Multi-tip sparker for the generation of acoustic pulses[J]. Sensor Review, 2003, 23(1):55-59. doi: 10.1108/02602280310457974
    [5]
    SUN Y, FU R, FAN A, et al. Study of rock fracturing generated by pulsed discharging under confining pressure[C]//2015 IEEE Pulsed Power Conference (PPC). Austin, TX, USA: IEEE, 2015: 1-4. DOI: 10.1109/PPC.2015.7296927.
    [6]
    BEES G L, TYDEMAN A. Capacitor charging power supply design for pulse to pulse repeatability applications[C]//Digest of Technical Papers: 12th IEEE International Pulsed Power Conference (Cat. No.99CH36358). Monterey, CA, USA: IEEE, 1999, 1: 397-398. DOI: 10.1109/PPC.1999.825494.
    [7]
    BIEBACH J, EHRHART P, MULLER A, et al. Compact modular power supplies for superconduting inductive storage and for capacitor charging[J]. IEEE Trans on Magnetics, 2001, 37(1):353-357. doi: 10.1109/20.911853
    [8]
    POLLARD B C, NELMS R M.Using the series parallel resonant converter in capacitor charging application[C]//Proceedings of APEC'92 Seventh Annual Applied Power Electronics Conference and Exposition. MA, USA, USA: IEEE, 1992: 245-252. DOI: 10.1109/APEC.1992.228405.
    [9]
    杨小卫, 严萍, 孙鹞鸿, 等.35kV/0.7A高压变频恒流充电电源[J].高电压技术, 2006, 32(5):54-56. doi: 10.3969/j.issn.1003-6520.2006.05.016

    YANG Xiaowei, YAN Ping, SUN Yaohong, et al. 35kV/0.7A high voltage high frequency constant charging power supply[J]. High Voltage Engineering, 2006, 32(5):54-56. doi: 10.3969/j.issn.1003-6520.2006.05.016
    [10]
    FORSYTH A J, WARD G A, MOLLOV S V. Extended fundamental frequency analysis of the LCC resonant converter[J]. IEEE Transactions on Power Electronics, 2003, 18(6):1286-1292. doi: 10.1109/TPEL.2003.818826
    [11]
    邵建设, 严萍.高压电容器充电电源谐振变换器的定频控制[J].高电压技术, 2006, 32(11):107-110. doi: 10.3969/j.issn.1003-6520.2006.11.027

    SHAO Jianshe, YAN Ping. Constant switching frequency control of resonant converter of high voltage capacitor charging power supply[J]. High Voltage Engineering, 2006, 32(11):107-110. doi: 10.3969/j.issn.1003-6520.2006.11.027
    [12]
    苏建仓, 王利民, 丁永忠, 等.串联谐振充电电源分析与设计[J].强激光与粒子束, 2004, 16(12):1611-1614. http://cdmd.cnki.com.cn/Article/CDMD-10487-2009035686.htm

    SU Jiancang, WANG Limin, DING Yongzhong, et al. Analysis and design of series resonant charging power supply[J]. High Power Laser and Particle Beams, 2004, 16(12):1611-1614. http://cdmd.cnki.com.cn/Article/CDMD-10487-2009035686.htm
    [13]
    NELMS R M, SCHATZ J E. A capacitor charging power supply utilizing a ward converter[J]. IEEE Transactions on Industrial Electronics, 1992, 39(5):421-428. doi: 10.1109/41.161473
    [14]
    张东辉, 严萍.高压电容器充电电源的研究[J].高电压技术, 2008, 34(7):1450-1455. http://d.old.wanfangdata.com.cn/Periodical/gdyjs200807026

    ZHANG Donghui, YAN Ping. Development in high voltage capacitor charging power supply[J]. High Voltage Engineering, 2008, 34(7):1450-1455 http://d.old.wanfangdata.com.cn/Periodical/gdyjs200807026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (5756) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return