Citation: | SHAO Jiwei, ZHUANG Chunji, WANG Zhirong, HUANG Yunan, LU Wenting. Explosion suppression effect of CH4/air by combined porous materials in a container piping system[J]. Explosion And Shock Waves, 2018, 38(4): 905-912. doi: 10.11883/bzycj-2017-0064 |
[1] |
崔克清, 张礼敬, 陶刚.化工安全设计[M].北京:化学工业出版社, 2004:1-2.
|
[2] |
ROBERT Z. Deflagration suppression using expanded metal mesh and polymer foams[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4):659-663. https://www.deepdyve.com/lp/elsevier/deflagration-suppression-using-expanded-metal-mesh-and-polymer-foams-PeaLrTuryo
|
[3] |
孙建华, 李艳霞, 魏春荣, 等.泡沫铁镍金属抑制瓦斯爆炸冲击波的实验研究[J].功能材料, 2013, 44(10):1390-1394. doi: 10.3969/j.issn.1001-9731.2013.10.005
SUN Jianhua, LI Yanxia, WEI Chunrong, et al. Experimental study on the porous foam iron-nickel metal inhibition of gas explosion wave[J]. Journal of Functional Materials, 2013, 44(10):1390-1394. doi: 10.3969/j.issn.1001-9731.2013.10.005
|
[4] |
VASIL'EV A A. Near-limiting detonation in channels with porous walls[J]. Combustion, Explosion, and Shock Waves, 1994, 30(1):101-106. doi: 10.1007/BF00787892
|
[5] |
DIAMANTIS D J, MASTORAKOS E, GOUSSIS D A. Simulations of premixed combustion in porous media[J]. Combustion Theory and Modelling, 2002, 6(3):383-411. doi: 10.1088/1364-7830/6/3/301
|
[6] |
JOO H I, DUNCAN K, CICCARELLI G. Flame quenching performance of ceramic foam[J]. Combustion Science and Technology, 2006, 178(10/11):1755-1769. doi: 10.1080/00102200600788692?needAccess=true
|
[7] |
喻健良, 蔡涛, 李岳, 等.丝网结构对爆炸气体淬熄的试验研究[J].燃烧科学与技术, 2008, 14(2):97-100. http://cdmd.cnki.com.cn/Article/CDMD-10141-2005070890.htm
YU Jianliang, CAI Tao, LI Yue, et al. Experiment to quench explosive gas with structure of wire mesh[J]. Journal of Combustion Science and Technology, 2008, 14(2):97-100. http://cdmd.cnki.com.cn/Article/CDMD-10141-2005070890.htm
|
[8] |
NIE B, HE X, ZHANG R, et al. The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation[J]. Journal of Hazardous Materials, 2011, 192(2):741-747. doi: 10.1016/j.jhazmat.2011.05.083
|
[9] |
魏春荣, 徐敏强, 王树桐, 等.多孔材料抑制瓦斯爆炸火焰波的实验研究[J].中国矿业大学学报, 2013, 42(2):206-213. http://www.cnki.com.cn/Article/CJFDTotal-ZGKD201302007.htm
WEI Chunrong, XU Minqiang, WANG Shutong, et al. Experiment of porous materials for suppressing the gas explosion flame wave[J]. Journal of China University of Mining and Technology, 2013, 42(2):206-213. http://www.cnki.com.cn/Article/CJFDTotal-ZGKD201302007.htm
|
[10] |
石油化工静电接地设计规范: SH/T 3097-2017[S]. 北京: 国家石油和化学工业局, 2000: 6.
|
[11] |
尤明伟, 喻源, 蒋军成, 等.不同管长条件下连通容器预混气体的爆炸[J].燃烧科学与技术, 2012, 18(3):256-259. http://www.oalib.com/paper/5140604
YOU Mingwei, YU Yuan, JIANG Juncheng, et al. Premixed flammable gas explosion in containers connected by pipes with different lengths[J]. Journal of Combustion Science and Technology, 2012, 18(3):256-259. http://www.oalib.com/paper/5140604
|
[12] |
CUI Y Y, WANG Z R, ZHOU K B, et al. Effect of wire mesh on double-suppression of CH4/air mixture explosions in a spherical vessel connected to pipelines[J]. Journal of Loss Prevention in the Process Industries, 2017, 45:66-77. https://www.researchgate.net/publication/272390393_A_high-precision_method_for_calculating_the_pressure_drop_across_wire_mesh_filters
|
[13] |
ZHANG J, SUN Z, ZHENG Y, et al. Coupling effects of foam ceramics on the flame and shock wave of gas explosion[J]. Safety Science, 2012, 50(4):797-800. doi: 10.1016/j.ssci.2011.08.031
|
[14] |
OH K H, KIM H, KIM J B, et al. A study on the obstacle-induced variation of the gas explosion characteristics[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(6):597-602. doi: 10.1016/S0950-4230(01)00054-7
|
[15] |
韩丰磊. 多孔材料抑制火焰传播的实验研究及数值模拟[D]. 大连: 大连理工大学, 2008: 27-34. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1247906
|
[16] |
SUN J, YI Z, WEI C, et al. The comparative experimental study of the porous materials suppressing the gas explosion[J]. Procedia Engineering, 2011, 26:954-960. doi: 10.1016/j.proeng.2011.11.2262
|
[1] | YANG Ke, LI Xuerui, JI Hong, ZHENG Kai, XING Zhixiang, JIANG Juncheng. Experiment on suppression of methane/air explosion in pipeline by modified coal gangue-sodium alginate powder[J]. Explosion And Shock Waves, 2024, 44(7): 075401. doi: 10.11883/bzycj-2023-0399 |
[2] | JIANG Yuting, ZHONG Donghai, FANG Zehui, DING Yuanyuan, ZHOU Fenghua. Mechanical behavior of cuttlebone structure and its strain rate effect[J]. Explosion And Shock Waves, 2024, 44(4): 043102. doi: 10.11883/bzycj-2023-0142 |
[3] | CHEN Xiaokun, WANG Jun, CHENG Fangming. Research progress on hydrogen gas explosion suppression materials and their suppression mechanisms[J]. Explosion And Shock Waves, 2024, 44(11): 111101. doi: 10.11883/bzycj-2023-0418 |
[4] | ZHANG Baoyong, TAO Jin, CUI Jiarui, ZHANG Yiyu, WANG Yajun, HAN Yonghui, SUN Man. Absorption characteristics of methane-air mixture explosion energyby foam metal with a corrugated surface against explosion[J]. Explosion And Shock Waves, 2023, 43(11): 115401. doi: 10.11883/bzycj-2023-0084 |
[5] | Effect of right-angle duct and its section variation on gas explosion prevention[J]. Explosion And Shock Waves. |
[6] | WANG Jingui, HU Chao, LUO Feiyun, ZHANG Su. Experimental study on the effects of venting area on the structural response of vessel walls to methane-air mixture deflagration[J]. Explosion And Shock Waves, 2022, 42(4): 045102. doi: 10.11883/bzycj-2021-0327 |
[7] | ZHOU Hui, REN Huiqi, WU Xiangyun, YI Zhi, HUANG Kui, MU Chaomin, WANG Hailu. A review of sacrificial claddings in multilayer protective structure[J]. Explosion And Shock Waves, 2022, 42(11): 111101. doi: 10.11883/bzycj-2022-0280 |
[8] | JIA Hailin, ZHAI Rupeng, LI Dihui, XIANG Haijun, YANG Yongqin. Differences of premixed methane-air explosion in pipelines suppressed by three ultrafine water mists containing different salts[J]. Explosion And Shock Waves, 2020, 40(8): 082201. doi: 10.11883/bzycj-2019-0456 |
[9] | DUAN Yulong, WANG Shuo, HE Sen, WAN Lin. Characteristics of gas explosion to diffusion combustion under porous materials[J]. Explosion And Shock Waves, 2020, 40(9): 095401. doi: 10.11883/bzycj-2020-0009 |
[10] | HU Yang, YIN Shangxian, Bjørn J. ARNTZEN, ZHU Jianfang, LI Xuebing, Ragnhild Dybdal OIE, QIN Hansheng. Experimental study of multi-objective coupling synchronous control in gas/air premixed gas deflagration flow test system[J]. Explosion And Shock Waves, 2019, 39(9): 094201. doi: 10.11883/bzycj-2018-0312 |
[11] | ZHAO Qi, CHEN Xianfeng, DAI Huaming, YIN Shuhui, WANG Xiaotong, ZHANG Hongming, HUANG Chuyuan. Inhibition of explosion characteristic of premixed gases by filling patterns of rare earth metal materials[J]. Explosion And Shock Waves, 2019, 39(11): 115404. doi: 10.11883/bzycj-2018-0276 |
[12] | SUN Conghuang, QU Yandong, LIU Wanli, ZHAI Cheng. Influence of different ignition conditions on deflagration characteristics of a premixed mixture of H2 and air in a closed pipe[J]. Explosion And Shock Waves, 2018, 38(3): 622-631. doi: 10.11883/bzycj-2016-0309 |
[13] | ZHOU Ning, ZHANG Guowen, WANG Wenxiu, ZHAO Huijun, YUAN Xiongjun, HUANG Weiqiu. Effect of ignition energy on the explosion process and the dynamic response of propane-air premixed gas[J]. Explosion And Shock Waves, 2018, 38(5): 1031-1038. doi: 10.11883/bzycj-2017-0049 |
[14] | Zhao Huanjuan, J.H.S.Lee, Zhang Yinghua, Qian Xinming, Yan Yiran. Effects of boundary conditions on premixed CH4+2O2 detonation characteristics[J]. Explosion And Shock Waves, 2017, 37(2): 201-207. doi: 10.11883/1001-1455(2017)02-0201-07 |
[15] | Li Ying, Ren Guangwei, Zhang Wei, Zhao Pengduo, Zhang Lei, Du Zhipeng. Water mitigation effect under internal blast[J]. Explosion And Shock Waves, 2017, 37(6): 1080-1086. doi: 10.11883/1001-1455(2017)06-1080-07 |
[16] | Cao Yong, Guo Jin, Hu Kunlun, Shao Ke, Yang Fan. Effect of ignition locations on vented explosion of premixed hydrogen-air mixtures[J]. Explosion And Shock Waves, 2016, 36(6): 847-852. doi: 10.11883/1001-1455(2016)06-0847-06 |
[17] | Cheng Guan-bing, Li Jun-xian, Li Shu-ming, Qu Hong-chun. An experimental study on detonation characteristics of binary fuels hydrogen/propane-air mixtures[J]. Explosion And Shock Waves, 2015, 35(2): 249-254. doi: 10.11883/1001-1455(2015)02-0249-06 |
[18] | Wang Peng-fei, Xu Song-lin, Li Zhi-bin, Hu Shi-sheng. Effect of micro-structure on the strain rate of cellular materials[J]. Explosion And Shock Waves, 2014, 34(3): 285-291. doi: 10.11883/1001-1455(2014)03-0285-07 |
[19] | QIAN Hai-lin, WANG Zhi-rong, JIANG Jun-cheng. InfluenceofN2/CO2 mixtureonmethaneexplosion[J]. Explosion And Shock Waves, 2012, 32(4): 445-448. doi: 10.11883/1001-1455(2012)04-0445-04 |
[20] | CHEN Dong-liang, SUN Jin-hua, LIU Yi, MA Ye-feng, HAN Xue-bin. Propagation characteristics of premixed methane-air flames[J]. Explosion And Shock Waves, 2008, 28(5): 385-390. doi: 10.11883/1001-1455(2008)05-0385-06 |
1. | 关文玲,矦逸飞,任常兴,董呈杰,张网. 多孔材料对泄爆管道LPG爆炸抑制效应的影响研究. 中国安全科学学报. 2024(06): 82-89 . ![]() | |
2. | 杜昌华,王麒翔,李世宪,雷世林. 多孔材料下瓦斯爆炸反向扩散火焰演化行为研究. 能源与环保. 2024(09): 38-44 . ![]() | |
3. | 边振华,李小萌. 封闭巷道挡板对爆炸冲击波传播的影响研究. 煤矿安全. 2023(01): 70-76 . ![]() | |
4. | 郑露露,龙凤英,温子阳,李泽欢,段玉龙. 多孔材料-CO_2对CH_4/H_2抑爆失效研究. 安全. 2022(09): 24-30+36 . ![]() | |
5. | 丁淇德,韩向军,雷欣涛,牛长军,王立志. 基于LabVIEW的管道甲烷气体监测系统设计. 能源与环保. 2022(10): 229-234 . ![]() | |
6. | 唐毅,员亚龙,李开源,陈先锋,袁必和,贺云龙,黄楚原. 球形非金属材料对甲烷掺氢爆炸抑制机理研究. 高压物理学报. 2022(06): 182-189 . ![]() | |
7. | 何昆,石英杰,李孝斌,田国兵. 惰性气体抑制丙酮蒸气爆炸实验对比研究. 消防科学与技术. 2021(01): 16-19 . ![]() | |
8. | 张龚. 工业气体爆炸事故原因分析及应急救援. 化工设计通讯. 2021(09): 147-148 . ![]() | |
9. | 严灼,穆朝民,袁树杰,李重情,齐娟. 空腔长宽比对瓦斯爆炸冲击波传播规律的影响. 煤炭学报. 2020(05): 1803-1811 . ![]() | |
10. | 段玉龙,王硕,王文和,邓智迅,赖帆,张晏华. 多孔陶瓷结构抑制甲烷爆炸实验研究. 消防科学与技术. 2020(06): 746-749 . ![]() | |
11. | 段玉龙,王硕,贺森,万琳. 多孔材料下气体爆炸转扩散燃烧的特性研究. 爆炸与冲击. 2020(09): 113-121 . ![]() | |
12. | 路长,王鸿波,张运鹏,朱寒,余明高. 氮气幕对瓦斯爆炸进行阻爆实验. 化工进展. 2019(07): 3056-3064 . ![]() |